Bruce Reznick and Neriman Tokcan
Proceedings of the American Mathematical Society, 145 (2017), 5169-5177
Publication year: 2017

Abstract

Suppose f(x,y) is a binary form of degree d with coefficients in a field K. The K-rank of f is the smallest number of d-th powers of linear forms over K of which f is a K-linear combination. We prove that for d5, there always exists a form of degree d with at least three different ranks over various fields. The K-rank of a form f (such as x3y2) may depend on whether -1 is a sum of two squares in K.