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The Human Genome Project 

www.clevaLab.com

Human Reference DNA

Sanger Sequencing 

Cost: $3 billion

Next generation sequencing

Time: 32 years Time: 1 day
Cost: $1,000- $5,000 



The omics era

Bulk 
genomics

Single-cell 
genomics

Spatial 
transcriptomics

Multi-omics data
 𝒅𝒐𝒏𝒐𝒓𝒔 ×  𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 ×  𝒐𝒎𝒊𝒄𝒔 𝒑𝒍𝒂𝒕𝒇𝒐𝒓𝒎𝒔 



The omics era

single-cellbulk-sequencing multi-omics
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Multi-modal genomics data

How to represent 
represent and study 
this triple interaction 
between genes, cell 
types and donors



1 What is
a tensor?



What is a tensor? 

A tensor is a generalization of matrices to higher dimensions. We will explore this generalization from two
 perspectives:

Multilinear 
algebra

Data 
structure

Matrices correspond to linear maps, whereas tensors correspond to multilinear maps.
- We will introduce multilinear maps, tensor product spaces

Tensors are multi-dimensional arrays, we will discuss representation of tensor data.



Tensors are multilinear maps
 multilinear map

Let 𝑈1, 𝑈2 … , 𝑈𝑑 be vector spaces. A function 𝑓: 𝑈1 × 𝑈2 × ⋯ × 𝑈𝑑 → ℂ is called multilinear if it is linear 
in each variable. 

𝑓 𝑢1, … , 𝑎 𝑢𝑖 + 𝑏 𝑢𝑖
′, … , 𝑢𝑑 = 𝑎 𝑓 u1, … , ui, … , 𝑢𝑑 + 𝑏𝑓 u1, … , 𝑢𝑖

′, … , 𝑢𝑑  

The space of all multilinear maps is denoted by 𝑈1
∗ ⊗ 𝑈2

∗ ⊗ ⋯ ⊗ 𝑈𝑑 
∗ 

Elements 𝒯 ∈ 𝑈1
∗ ⊗ 𝑈2

∗ ⊗ ⋯ ⊗ 𝑈𝑑
∗ are called tensors.

 

For any 𝑢2 ∈ 𝑈2, … , 𝑢𝑑 ∈ 𝑈𝑑 𝑓 : , 𝑢2, … , 𝑢𝑑 → ℂ is linear. Same for all 1 ≤ 𝑖 ≤ 𝑑. 



Tensor notations

The order of a tensor is the number of dimensions, also known as ways or modes. 

Let 𝓧 be tensor in  ℂ𝑛1×𝑛2×⋯×𝑛𝑑 , then (𝑖1, i2, … , 𝑖𝑑)-th entry of 𝒳 is denoted by 𝓧𝒊𝟏𝒊𝟐…𝒊𝒅
, 𝟏 ≤ 𝐢𝟏 ≤ 𝒏𝟏, … , 𝟏 ≤ 𝒊𝒅 ≤ 𝒏𝐝 .

𝓧 in ℂ𝑛1×𝑛2×⋯×𝑛𝑑  is an order-𝑑 (𝑑-way) tensor, it has 𝑑 modes.  
Order of 
a tensor

Vectors are 
order-1 tensors

matrices are
order-2 tensors

order-3
tensor

order-4
tensor



Tensors are multi-dimensional arrays
a.k.a. multi-linear maps

Scalar Vector Matrix Tensor

they can be considered 
as  generalizations of 

matrices to higher 
dimensions

1d 2d 3d

4d 5d 6d

Figure credit: Anima Anandkumar



Tensors: a compact way to represent multi-modal data
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Multi-sample
multi-tissue 
genomics data
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Perturbational 
Datasets

Bioinformatics Computer Vision Physics ChemistryMachine LearningSocial Computing
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Multi-modal
genomics data

𝓣

tissue from 
donor 1

tissue from 
donor 2

tissue from 
donor 3

tissue from 
donor 4

CELLS

#𝑔𝑒𝑛𝑒𝑠 ×  #𝑐𝑒𝑙𝑙𝑠 
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𝓣 123= average expression 
of gene #1 at cell type #2 
in the donor #3

(Genes × Cell types × Donors) 



Tensor fibers

Fibers are generalizations of matrix rows and columns. A fiber is defined by fixing all but one index of a tensor.

Let 𝓧 be a 3-way tensor of size 7 × 5 × 8, then we can form fibers for each modality such as 

𝓧:12 ∈ ℂ7, 𝓧1:3 ∈ ℂ5, 𝓧34: ∈ ℂ8

mode-1
column fibers 

mode-2
row fibers 

mode-3
tube fibers 



Unfolding

𝑰𝟏 𝓣

𝑰𝟐

𝑰𝟑

𝓣(𝟏)

𝓣𝟏|𝟐𝟑

𝓣(𝟐)

𝓣𝟐|𝟏𝟑

𝓣(𝟑)

𝓣𝟑|𝟏𝟐



Slices

𝓣

Horizontal slices Frontal slicesLateral slices

𝓣𝒊∷ 𝓣:𝒋:
 

𝓣∷𝒌



𝓣 ∈ ℝ𝟑 ×𝟒 ×𝟐 

Slices

𝓣∷1= 𝓣∷2=

Fibers 𝓣:𝟐𝟏 = [4 5 6 ] 𝓣𝟐:𝟐 =  [14 17 20 23] 𝓣𝟑𝟒: =  [12 24]

Slices 

𝓣𝟏∷ =

1 13
4 16
7 19

10 20

𝓣:𝟐: =
4 16
5 17
6 18



Unfolding

𝓣 ∈ ℝ𝟑 ×𝟒 ×𝟐 𝓣∷1= 𝓣∷2=

𝓣(𝟏) = 

𝓣(𝟐) =

 

𝓣(𝟑) = 



Outer product, Kronecker product

The vector outer product of  𝑎 ∈ ℝ𝐼, 𝑏 ∈ 𝑅𝐽 𝑖𝑠 𝒂 ⊗ 𝒃 = 𝒂𝒃𝑻 ∈ ℝ𝐼×𝐽

Rank 1 matrix

The Kronecker product of 𝐴 ∈ ℝ𝐼×𝐽, B ∈ ℝ𝐾×𝐿



Kronecker product 
results in a block  matrix 

Kronecker product: examples (matrix direct product)

Example:

special case of  the tensor product space

Kronecker product constructs a bilinear map:

&⇒



Properties of Kronecker product 

distributive

associative

mixed product

transpose

scalar 
multiplication

for compatible matrices

1

2

3

4

5



Properties of Kronecker product 

𝜆𝑖
′𝑠 are eigenvalues of 𝐴, 𝜇𝑗’s are eigenvalues of 𝐵, then eigenvalues of 𝐴 ⊗ 𝐵 = {𝜆𝑖𝜇𝑗: ∀ 𝑖, 𝑗}

 

𝐴 𝑣𝑖 = 𝜆𝑖𝑣𝑖 𝐵𝑢𝑗 = 𝜇𝑗𝑢𝑗and 𝐴 ⊗ 𝐵 𝑣𝑖 ⊗ 𝑢𝑗 = 𝐴𝑣𝑖 ⊗ 𝐵𝑢𝑗  

𝐴 ⊗ 𝐵 𝑣𝑖 ⊗ 𝑢𝑗 = (𝜆𝑖 𝑣𝑖 ) ⊗  𝜇𝑗 𝑢𝑗 𝐴 ⊗ 𝐵 𝑣𝑖 ⊗ 𝑢𝑗 = 𝝀𝒊 𝝁𝒋  𝑣𝑖 ⊗ 𝑢𝑗

⟹

⟹

⟹



if 𝐴 and 𝐵 are invertible.

Properties of Kronecker product 

column space of 𝐴 is spanned by 𝑟𝐴 = 𝑅𝑎𝑛𝑘 𝐴  linearly independent columns {𝑎1, … , 𝑎𝑅𝐴
}

column space of 𝐵 is spanned by 𝑟𝐵 = 𝑅𝑎𝑛𝑘 𝐵  linearly independent columns {𝑏1, … , 𝑏𝑅𝐵
}

column space of 𝐴 ⊗ 𝐵 is spanned by {𝑎1 ⊗ 𝑏1, … , 𝑎𝑅𝐴
⊗ 𝑏𝑅𝐵

}



Khatri-Rao product, Hadamard product

The Khatri-Rao product of 𝐴 ∈ ℝ𝐼×𝐾, B ∈ ℝ𝐽×𝐾 is the matching-columnwise Kronecker product 

The Hadamard product of 𝐴 ∈ ℝ𝐼×𝐽, B ∈ ℝ𝐼×𝐽 is the elementwise matrix product 



Properties of Khatri-Rao product 

Matching columnwise Kronecker product– so previous properties  listed for Kronecker product hold such as 
associativity, distributivity

for other properties see Kronecker product



Properties of Khatri-Rao product 

first, we define the pseudoinverse

maps all column vectors of 𝐴 to themselves

acts as a weak inverse

is Hermitian

is Hermitian

We can  also conclude

It should satisfy these 4 properties 
for every matrix there is one and only 
One pseudo-inverse

1

2

3

4



Properties of Khatri-Rao product 

we use the property 

for real matrices

we use the property



Mode-n product 

every mode-n fiber is multiplied by the matrix 𝐴

mode-n product is related to a change of basis in the case when a tensor defines a multilinear map 

order independence across modes

if the modes are the same

Properties:



Mode-n product 

𝓣∷1= 𝓣∷2= ⟹ 𝓣 is 2 × 3 × 2

we can multiply 𝓣 and 𝑈
 along 2th mode 

𝓣(𝟐)= ⟹ 𝑈𝓣(𝟐) = = 𝒴(2)

We can also express it in terms of unfolded tensors:

Example: 

𝒯 ×2  𝑈 =  𝒴 of size 2 × 4 × 2

⟹ we need to reshape it

Notice that we expanded the second dimension

Common usage is reducing the dimension, i.e.,  compressing the tensor



Tensor inner product

For 𝓧, 𝓨 ∈  ℝ𝑛1×𝑛2×⋯×𝑛𝑑,  the inner product of tensors 𝒳, 𝒴:

< 𝓧, 𝓨 >= ෍

𝒊𝟏=𝟏

𝒏𝟏

෍

𝒊𝟐=𝟏

𝒏𝟐

… ෍

𝒊𝒅=𝟏

𝒏𝒅

𝓧𝒊𝟏𝒊𝟐…𝒊𝒅
𝓨𝒊𝟏𝒊𝟐…𝒊𝒅

For 𝓧 ∈  ℝ𝑛1×𝑛2×⋯×𝑛𝑑 , then the Frobenius norm of tensor 𝒳 is given as 

𝓧 𝑭= σ
𝒊𝟏=𝟏
𝒏𝟏 σ

𝒊𝟐=𝟏
𝒏𝟐 … σ

𝒊𝒅=𝟏
𝒏𝒅 𝓧𝒊𝟏𝒊𝟐…𝒊𝒅

𝟐

Distance (or similarity) between tensors? 

𝒅(𝓣, 𝓣’)= 𝓣 − 𝓣′
𝑭 (not a probabilistic approach, assumes normal noise)

Kullback-Leibner divergence

𝐷𝐾𝐿 (𝒯| 𝒯 = ෍

𝑧∈𝑍

𝒯 𝑧 𝑙𝑜𝑔
𝒯(𝑧)

𝒯′(𝑧)

(probabilistic approach) –distance metric for tensors is an active research area, 
we will discuss different distance/similarity matrices 



Symmetric tensors

𝓣  is a d-way tensor of size N × 𝑁 × ⋯ × 𝑁 , then 𝓣 is symmetric if 

Let V be a vector space of dimension N and 𝓣 ∈ 𝑽 ⊗ 𝑽 ⊗ ⋯ ⊗ 𝑽 = 𝑽⊗𝒅

𝑑 times

𝑑 times

𝓣𝑖1 𝑖2…𝑖𝑑 = 𝓣𝜎 𝑖1 𝜎 𝑖2 …𝜎 𝑖𝑑  
for all permutation 𝜎 ∈ 𝑆𝑛 

𝓣
N

N

N

𝓣𝟏𝟐𝟑 = 𝓣𝟏𝟑𝟐= 𝓣𝟑𝟏𝟐= 
𝓣𝟑𝟐𝟏 = 𝓣𝟐𝟑𝟏= 𝓣𝟐𝟏𝟑

Assume 𝑁 ≥ 3

𝑺𝒅(𝑽): set of the space of all symmetric tensors of order d defined on V

𝑺𝒅 ℂ𝒏 : set of all symmetric tensors of order d represents the space of 
symmetric tensors over ℂ𝑛

𝑆 ℂ𝑛 = ⊕𝑑  𝑆𝑑 ℂ𝑛  
𝑆 ℂ𝑛  space of symmetric tensors



Symmetric tensors : 
homogenous polynomials

𝓣 ∈ 𝑺𝒅 ℂ𝒏  ⇔ 𝒇 𝓣 ∈ ℂ𝒅 𝒙𝟏, 𝒙𝟐, 𝒙𝒏  
  

(polynomial of degree 𝒅 with 𝑛 variables) 

𝑓𝑇 𝑥1, 𝑥2, … , 𝑥𝑛 = ෍  𝓣𝒊𝟏 𝒊𝟐…𝒊𝒅 𝑥𝑖1 
𝑥𝑖2

… 𝑥𝑖𝑛 

෍
𝑑

𝑗1 𝑗2 … 𝑗𝑛
𝓣1…1 2…2…𝑛…𝑛 𝑥1

𝑗1 𝑥2
𝑗2 … 𝑥𝑑

𝑗𝑛

𝑖1𝑖2 … 𝑖𝑑 = 1 … 1 2 … 2 … 𝑛 … 𝑛 

𝑗1 times 𝑗2 times 𝑗𝑛 times

𝑓𝑇 𝑥1, … , 𝑥𝑛   = 

𝑗1 + 𝑗2 + ⋯ + 𝑗𝑛 = 𝑑

𝑗1 + 𝑗2 + ⋯ + 𝑗𝑛 = 𝑑

𝑗1 times



Symmetric tensors :
 matrix case

Let 𝑀 be symmetric matrix, 𝑀 ∈ 𝑆2 𝐶𝑛  - what is the corresponding homogeneous polynomial? 

Example: 

homogeneous quadratic 
polynomial with n variables

⟹ 𝑓𝑀 𝑥1, 𝑥2 = 

= 𝑎 𝑥1
2 + 2 𝑎 𝑏 𝑥1𝑥2 + 𝑐 𝑥2

2

note that 𝑥𝑇𝑀 𝑥 appears in 
quadratic programming 



𝒯= 
3 1 
1 0 

1 0
0 4

3

𝒯 is a 2 × 2 × 2 symmetric tensor 

𝒯111=3 

𝒯112= 𝒯121= 𝒯211=1 

𝒯122= 𝒯212= 𝒯221=0

4

𝒯222=4

𝑓𝑇 x1, x2  =  3𝑥1
3 + 1 ∗ 3 𝑥1

2𝑥2 + 0 ∗ 3𝑥1 𝑥2
2 + 4 ∗  x2

3

       

𝑥1
3

3𝑥1
2 𝑥2

3𝑥1 𝑥2
2

𝑥2
3

𝑓𝑇 x1, x2 = 3𝑥1
3 + 3𝑥1

2𝑥2 + 4 x2
3 

Symmetric tensors :



Rank-1 tensor

The vector outer product of  𝑢 ∈ ℝ𝑛1, 𝑣 ∈ 𝑅𝑛2  𝑖𝑠 𝒖 ⊗ 𝒗 = 𝒖𝒗𝑻 ∈ ℝ𝑛1×𝑛2

rank 1 matrix 

A d-way rank 1 tensor 𝒯 of size 𝑛1 × 𝑛2 × ⋯ × 𝑛𝑑 is written as outer product of 𝑑 vectors

𝓣 = 𝒖𝟏 ⊗ 𝒖𝟐 ⊗ ⋯ ⊗ 𝒖𝒅 ,
rank 1 tensor

pure (simple)  tensor 

where 𝑢𝑖 ∈ ℝ𝑛𝑖, 1 ≤ 𝑖 ≤ 𝑑.

𝓣𝒊𝟏𝒊𝟐…𝒊𝒅
=𝒖𝒊𝟏

𝟏  𝒖𝒊𝟐

𝟐 … 𝒖𝒊𝒅

𝒅
represents a separable signal which can be expressed as the 
combination of independent factors from each mode.



Rank-1 tensor
example

𝓣 = 𝒖𝟏 ⊗ 𝒖𝟐 ⊗ 𝒖𝟑, 𝓣𝒊𝒋𝒌 = 𝒖𝒊
𝟏 ⊗ 𝒖𝒋

𝟐 ⊗ 𝒖𝒌
𝟑, 3 × 4 × 2 tensor

𝒯∷1= 8 𝑢1 ⊗ 𝑢2= 8 1 2 3 4 5 6 7 ⊤= 8 

𝒯∷2= 9𝑢1 ⊗ 𝑢2= 9 1 2 3 4 5 6 7 ⊤= 9

= 

=



Hidden variable models

Given independent random variables 𝑋1, 𝑋2, … 𝑋𝑑 with 𝑋𝑖 ∈ 𝑥1, 𝑥2, … , 𝑥𝑛𝑖
 , their joint distribution can be written 

as product of their marginal distributions:

𝑃 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑑 = 𝑥𝑑 = 𝑃 𝑋1 = 𝑥1 𝑃 𝑋2 = 𝑥2 … 𝑃 𝑋𝑑 = 𝑥𝑑

independent random variables: rank 1 tensors

The joint distribution can be represented with d −way tensor 𝓣 such that  

𝓣𝒊𝟏,𝒊𝟐,…,𝒊𝒅
= 𝑃 𝑋1 = 𝑥𝑖1

, 𝑋2 = 𝑥𝑖2
, … , 𝑋𝑑 = 𝑥𝑖𝑑

 𝓣 = 𝑃 𝑋1 ⊗ 𝑃 𝑋2 ⊗ ⋯ ⊗ 𝑃 𝑋𝑑  

rank-1 tensor naturally represents a system where each dimension corresponds to an independent random 
variable, and the tensor entries represent the product of probabilities (or related measures) associated with each
 independent variable.



Rank-1 tensor : unit of an expression pattern

S
am

pl
es

Multi-modal 
Genomics Data

𝓣𝟏

(Genes × Cell types × Samples) 

Assume that 𝓣𝟏 is a rank 1 tensor of size 𝑁𝑔  ×  𝑁𝑐  × 𝑁𝑠 where  
  

𝑁𝑔 = number of genes (20.000)
𝑁𝑐 = number of cell types (10)
𝑁𝑠 = number of samples (40)

𝓣𝟏 = 𝒈 ⊗ 𝒄 ⊗ 𝒔

g : genes latent factor

c : cell types latent factor

s : samples latent factor unit of an 
expression 
pattern 

g

𝑔 ⊗ 𝑐 ⊗ s

c

genes 
latent 
factor

Cell types 
latent 
factor



HL: Hodgkin lymphoma
EBV+: Epstein-Barr virus positive
EBV-: Epstein-Barr virus negative
RLN: Reactive Lymph node

Samples/ patient groups cell types 

g

d

genes 
latent 
factor

Cell types 
latent 
factor

Samples latent factor

Cell types latent 
factor

Gene
#1

Gene
#2K

JAK/STAT pathway promotes
 tumor cell proliferation and survival of tumor cells

Clusters of 
Gene 
Expression

Clusters of 
cell types

Donor type influence
Donor classification



Conditionally independent variables

Suppose that the random variables 𝑋1, 𝑋2, … 𝑋𝑑  are conditionally  independent, given 𝑍 = 𝑗. 

Z

𝑿𝟏

𝑿𝟐 𝑿𝒅

𝑃 𝑋1, 𝑋2, … , 𝑋𝑑 = σ𝑗=1
𝑅 𝑃(𝑍 = 𝑗)𝑃 𝑋1  𝑍 = 𝑗)𝑃 𝑋2  𝑍 = 𝑗) … 𝑃 𝑋𝑑  𝑍 = 𝑗) 

𝑃 𝑋1, 𝑋2, … , 𝑋𝑑  𝑍 = 𝑗) = 𝑃 𝑋1  𝑍 = 𝑗)𝑃 𝑋2  𝑍 = 𝑗) … 𝑃 𝑋𝑑  𝑍 = 𝑗)

The total distribution is obtained by summing over 𝑍 . Suppose 𝑍 ∈  {1, . . . , 𝑟 }, then the total 
distribution has the structure as a sum of 𝑟 rank-1 components: 

The conditional distribution

conditional distributionhidden variable distribution

𝓣𝒊𝟏,𝒊𝟐,…,𝒊𝒅
= 𝑃 𝑋1 = 𝑥𝑖1

, 𝑋2 = 𝑥𝑖2
, … , 𝑋𝑑 = 𝑥𝑖𝑑

 ⟹ 𝓣 = ෍

𝑗=1

𝑅

𝑃(𝑍 = 𝑗)𝑃 𝑋1 𝑍 = 𝑗) ⊗ 𝑃 𝑋2 𝑍 = 𝑗) ⊗ ⋯ ⊗ 𝑃 𝑋𝑑 𝑍 = 𝑗)

Rank 𝑅 tensor 



Matrix factorization

where and

Singular Value Decomposition (SVD)

Decomposition into orthogonal matrices and singular values

where 𝑈 and 𝑉 are orthogonal matrices

Non-negative matrix factorization (NMF) 

(as in principal component analysis (PCA))

non-negativity constraints for interpretability applications in topic modeling

QR  factorization factorization into orthogonal matrix 𝑄 and upper-triangular matrix 𝑅 

often used to solve least squares problems

LU Decomposition factorization into lower triangular matrix 𝐿 and upper triangular matrix U

often used to solve Iinear systems

data compression
extracts meaningful pattern



Eckart-Young theorem 



Matrix factorization
collaborative filtering

*This example and figures are taken from 

Latent features from the factorization capture correlations in previous 
user-item interactions, enabling user and item matrices to approximate 
these patterns and predict unknown ratings

2nd user= 𝒒𝟐

𝟒𝒕𝒉 user = 𝒒𝟒

𝟓𝒕𝒉 user= 𝒒𝟓 𝟏𝒔𝒕

movie
=𝒑𝟏

𝟑𝒓𝒅

movie
= 𝒑𝟑

𝟓𝒕𝒉

movie
=𝒑𝟓

𝑹𝒊𝒋 ≈ 𝐪𝐢 𝐩𝐣

𝑅23
estimated rate of 2nd user

 for 3𝑟𝑑movie 
≈ 𝑞2 𝑝3



Slices

Unfoldings
when data is 

matricized,
 information on the 

relations/interactions  
between different 
modalities is lost

𝓣
Genes

Samples

Samples
Cell types

Genes

Cell types Cell types

Genes
Samples

Cell types

Samples Samples

Cell types
Genes

Samples

Genes Genes

!𝓣(𝟑)

𝓣(𝟏)

𝓣(𝟐)

𝓣𝒊∷

𝓣:𝒋:

𝐺𝑒𝑛𝑒𝑠 × 𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠 ×  𝑆𝑎𝑚𝑝𝑙𝑒𝑠 

Low rank factorization
 matrix case



≈ ×

Factors

Genes

Matrix factorization

Genes
Samples

Cell 
types

Samples Samples

Cell types  (over each sample) 

Factors

Matrix Decomposition

𝝀𝟏

+ … + 

Genes latent factors

Cell types latent factors

= ෍

𝑖=1

𝑟

𝝀𝒊 𝑔𝑖 ⊗ 𝑟𝑖

𝝀𝟏 𝑔1 ⊗ 𝑟1

𝝀𝒓

Cell type factor 1 
over each sample

Gene latent factor #1 

Gene
#1

Gene
#2K

& 

Sample
#60

Cell 
types

… 

Sample
#1

Cell 
types



Class 
Discovery 

Candecomp/Parafac (CP) Decomposition

Samples
Factors

𝑁 × 𝑀 × 𝐾

𝑁𝑠 × 𝑅
𝑁𝑐 × 𝑅

𝑁𝑔 × 𝑅

𝓣Samples 

Cell Types

Cell Types
Factors

Gene
Factors

Samples
Factors

𝑁𝑔  × 𝑁𝑐  × 𝑁𝑠 



Cell Type latent factorSamples latent factor

෍

𝑟=1

𝑅

𝜆𝑟 𝑔𝑟 ⊗ 𝑐𝑟 ⊗ 𝑠𝑟

CP Decomposition

𝓣Genes

Samples

≈
+ ⋯ + + ⋯ + 

Genes latent factor

𝜆1𝑔1⊗𝑐1⊗𝑠1

𝜆1 𝜆𝑖 𝜆𝑅

𝒯 = 𝒯′ +  𝜀 where

𝒯′= 𝐺, 𝐶, 𝑆  where 𝑆 = 𝑠1 𝑠2 … 𝑠𝑅 , 𝐶 = 𝑐1 𝑐2 … 𝑐𝑅 , G = [g1 g2 … 𝑔𝑅]

𝓣′=
noise assumption?

        rank selection?
         constraints?
        uniqueness?

𝓣′= [𝜦; 𝑮, 𝑪, 𝑺]we can concisely represent this factorization



Candecomp/Parafac (CP) Decomposition
some of the different names

source: Tamara G. Kolda† Brett W. Bader, Tensor Decompositions and Applications 

 

Hitchcock, 
1927

Polyadic form of a tensor 

Harshman, 
1970

Parallel factor analysis (PARAFAC)

Carroll and 
Chang, 1970 Canonical Decomposition (CANDECOMP, CAND)

Möcks, 1988 Topographic components model 

Kiers, 2000 CP(Candecomp/PARAFAC)

Other names?
  CPD
  rank approximation



CP Decomposition

The mode- n matricized version of the approximation can be given as 

𝒯(𝑘) ≈ 𝐴 𝑘 Λ  𝐴 𝑁 ⊙ ⋯ ⊙ 𝐴 𝑘+1 ⊙ 𝐴 𝑘−1 ⊙ ⋯ ⊙ 𝐴 1 ⊤
, 1 ≤ 𝑘 ≤ 𝑁, Λ = 𝑑𝑖𝑎𝑔 𝜆  

 

min
𝒯′

𝒯 − 𝒯′ = ෍

i,j,k

εijk
2 where 𝒯′ = 𝜆; 𝐴 1 , 𝐴(2), … , 𝐴(𝑁 , 𝐴(𝑘) ∈ ℝ𝐼𝑘 ×𝑅, 1 ≤ 𝑘 ≤ 𝑅, 𝜆 = 𝜆1, 𝜆2, … , 𝜆𝑅 .

For an 𝑁-way tensor 𝒯 of size 𝐼1 × 𝐼2 × ⋯ × 𝐼𝑁 , consider CP rank 𝑅 approximation. We want to solve the following 
problem: 

It is not a convex problem, but it can be given as N convex problems. For these, we need to consider the matricized
version of the approximation

In the next slide– we will check it for order-3 tensor



CP-decomposition– traditional approaches

min
𝒯′

𝒯 − 𝒯′ = σi,j,k εijk
2    where 𝒯′= Λ; 𝐴, 𝐵, 𝐶 .

A common method for CP decomposition and other tensor-related optimization problems is  
alternating least squares. We want to solve the following problem: 

It is not a convex problem, but it can be given as 3 convex problems. 
 

min
𝑆

𝒯(1) − 𝐴 𝐶 ⊙ 𝐵 𝑇

min
𝐶

𝒯(2) − 𝐵 𝐶 ⊙ 𝐴 𝑇

min
𝐺

𝒯(3) − 𝐶 𝐵 ⊙ 𝐴 𝑇

where 𝒯(𝑖) is the mode-1 matricization of the tensor 𝒯,
⊙ denotes the ``Khatri-Rao” product – matching column-wise 
Kronecker product A⊙ B = [ a1 ⊗ 𝑏1 𝑎2 ⊗ 𝑏2 … 𝑎𝑅 ⊗ 𝑏𝑅]

Fit (explained variance)=

 1 −
𝒯 −𝒯′

𝒯 
 

Choice of the loss function or distance metric?
 
       Stability of the factorization? 

Kullback-Leibner divergence

𝐷𝐾𝐿 (𝒯| 𝒯′ = ෍

𝑧∈𝑍

𝒯 𝑧 𝑙𝑜𝑔
𝒯(𝑧)

𝒯′(𝑧)

Other loss functions? 



Tucker Decomposition

𝓣Donors

Cell types

Correlations between factors/clusters

Class 
Discovery 

𝑁 × 𝑀 × 𝐾

𝑁 × 𝑅1

𝐾 × 𝑅3

𝑀 × 𝑅2

𝑅1 × 𝑅2 × 𝑅3

Cell type
Factors

Gene
Factors

Donor
Factors

Donor
Factors



Cell types latent factorSamples latent factor

Tucker Decomposition

𝓣Genes 

Samples

≈
+ ⋯ + + ⋯ + 

𝓖𝑹𝟏𝑹𝟐𝑹𝟑

Genes latent factor

𝒢111𝑔1⊗𝑟1⊗𝑠1

𝒢𝟏𝟏𝟏

=

𝒢; 𝐆𝐞𝐧𝐞𝐬 𝐅𝐚𝐜𝐭𝐨𝐫𝐬,
𝑪𝒆𝒍𝒍 𝒕𝒚𝒑𝒆𝒔 𝑭𝒂𝒄𝒕𝒐𝒓𝒔,

𝑺𝒂𝒎𝒑𝒍𝒆𝒔 𝑭𝒂𝒄𝒕𝒐𝒓𝒔

! 𝐴, 𝐵, 𝐶 has orthogonal columns.

≈ ෍

𝑖=1

𝑅1

෍

𝑗=1

𝑅2

෍

𝑘=1

𝑅3

𝒢𝑖𝑗𝑘 𝑔𝑖 ⊗ 𝑐𝑗 ⊗ 𝑠𝑘
Tensorized

Data 



Tucker Decomposition



Tucker Decomposition - storage complexity

•Core tensor storage scales exponentially with the tensor order 𝑁, as it involves 𝑅𝑁,
•Factor matrix storage scales linearly with 𝑁, as it involves  𝐼𝑛𝑅 for each mode n.



Tucker, 1966 Three-mode factor analysis (3MFA/Tucker3) 

Kroonenberg, De 
Leeuw, 1980 

Three-mode PCA (3MPCA)

N-mode PCA

Higher-order SVD (HOSVD)

Vasilescu and 
Terzopoulos, 

2002 

N-mode SVD 

De Lathauwer 
et al., 2000 

Tucker Decomposition
some of the different names

source: Tamara G. Kolda† Brett W. Bader, Tensor Decompositions and Applications 

 

Other names?
MLSVD

Kapteyn et al., 
1986 



Tensor Rank 

The rank of a tensor 𝒯, denoted rank(𝓣), is defined as the smallest number of rank-one tensors needed to express
𝒯 as their sum. In other words, this is the smallest number of components in an exact CP decomposition. 

The concept of matrix rank and tensor rank are different.

Rank over different fields

𝒯 = σ𝑟=1

 𝑅
𝜆𝑟  𝑔𝑟 ⊗ 𝑐𝑟 ⊗ 𝑠𝑟 , where 𝜆𝑟 , 𝑔𝑟 , 𝑠𝑟 ∈ 𝐹, the smallest such R is called the rank of 𝒯 over 𝐹, 𝑟𝑎𝑛𝑘𝐹(𝒯). 

If 𝐹= ℝ, it is called real rank and if 𝐹= ℂ, it is called complex rank.  

Consider 𝑁-way tensor 𝒯 ∈ 𝐹𝐼1 ×𝐼2×⋯×𝐼𝑁 for 𝐹 ⊆  ℂ.

The rank of a matrix remains consistent across different fields, but this property does not extend to higher-order tensors.

𝒯∷1 = 𝒯∷2 = 
Example:

𝒯 is a 2 × 2 × 2 tensor with rank 3 over real numbers, 𝒯 = 𝐴, 𝐵, 𝐶 , where 

whereas it has rank 2 over ℂ has the following factor matrices instead, 𝒯 = 𝐷, 𝐸, 𝐹  

𝐷 = 𝐸 = 𝐹 =

1



2 There is no specific algorithm to determine the rank of a specific tensor; the problem is NP-hard.

3 Typical and maximal ranks

Tensor Rank 

The maximum rank is the highest achievable rank, whereas the typical rank is any rank that occurs with positive probability, 
meaning it appears on a set with non-zero Lebesgue measure.

• For matrices of size 𝑛 × 𝑚, maximum rank=typical rank=min 𝑛, 𝑚 . For higher-order tensors, these two ranks can be different.

maximum rank: ⟹

maximal rank and typical rank can be different 

there might be more than one typical rank over ℝ

there is always one typical rank over ℂ, which is called generic rank. 

for tensors of order 𝑑 ≥ 3, 



Uniqueness

𝑋 = 𝑈 𝑉⊤ , U ∈ ℝ𝑛 ×𝑟 and V ∈ ℝ𝑚 ×𝑟  

Assume that  𝑄 ∈ ℝ𝑟 ×𝑟 is an orthogonal matrix, then 

Let 𝑋 be 𝑛 × 𝑚 matrix with the factorization 

𝑋 = (𝑈𝑄) (𝑉𝑄)⊤

Thus, the presence of orthogonal transformations demonstrates that matrix factorizations are not unique.

• SVD is unique provided all the singular values are distinct
• For other factorizations, such as Non-Negative Matrix Factorization (NMF), strict conditions must be imposed 
to ensure uniqueness.

CP decomposition is unique under weaker conditions. Uniqueness means the factor matrices are uniquely determined, up to
 scaling and permutation.

𝒯 = σ𝑖=1
𝑅 𝑎𝑟 ⊗ 𝑏𝑟 ⊗ 𝑐𝑟 = [𝐴, 𝐵, 𝐶]= [𝑃𝐴, 𝑃𝐵, 𝑃𝐶] for any permutation matrix 𝑃 of size 𝑅 × 𝑅.uniqueness up to

 permutation 

uniqueness up to
 scaling 𝒯 = σ𝑖=1

𝑅 (𝛼𝑟𝑎𝑟) ⊗ (𝛽𝑟𝑏𝑟) ⊗ (𝛾𝑟𝑐𝑟) = [𝐴, 𝐵, 𝐶] where 𝛼𝑟𝛽𝑟𝛾𝑟 = 1, 1 ≤ 𝑟 ≤ 𝑅.



CP uniqueness

Kruskal’s result-sufficient condition

The 𝑘-rank of a matrix A, denoted 𝑘𝐴 , is defined as the maximum value 𝑘 such that any 𝑘 columns are linearly independent. 
The rank 𝑅 CP decomposition  of a 3 –way tensor 𝒯 =  [𝐴, 𝐵, 𝐶] is unique if 𝑘𝐴 + 𝑘𝐵 + kC ≥ 2R + 2. 
 

Sidiropoulos and Bro extended Kruskal’s result to 𝑁-way tensors. 

The rank 𝑅 CP decomposition  of a 𝑁–way tensor 𝒯 =  [𝐴 1 , 𝐴 2 , … , 𝐴 𝑁 ] is unique if  σ𝑘=1
𝑁 𝑘𝐴(𝑘) ≥ 2R + (N − 1). 

 

necessary condition for uniqueness of rank R decomposition of a N-way tensor 

min  𝑟𝑎𝑛𝑘( 𝐴 1  ⊙···⊙ 𝐴 𝑛−1  ⊙ 𝐴 𝑛+1  ⊙···⊙ 𝐴 𝑁 ) = 𝑅
1 ≤ 𝑛 ≤ 𝑁

𝑟𝑎𝑛𝑘(𝐴 ⊙  𝐵)  ≤  𝑟𝑎𝑛𝑘(𝐴 ⊗  𝐵)  ≤  𝑟𝑎𝑛𝑘(𝐴)  ·  𝑟𝑎𝑛𝑘(𝐵) 

⟹  min  ෑ
𝑚=1
𝑚≠𝑛 

𝑁

𝑟𝑎𝑛𝑘 𝐴 𝑚 ≥ 𝑅. 

simplifies the 
necessary condition



Border rank

Set of tensors of rank at most 𝑟 is not closed for 𝑟 ≥ 2 .

border rank(𝓧) = min 𝑟 ∶ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜖 > 0 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑎 𝑡𝑒𝑛𝑠𝑜𝑟 ഥ𝓧 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝓧 − ഥ𝓧 < 0 

• for matrices border rank = rank.
• it doesn’t hold for tensors.

border rank(𝓧)≤ rank(𝓧) 

Strassen’s algorithm for matrix multiplication relies on tensors with lower border rank to reduce computational complexity.

Matrix multiplication tensor:

4 ×  4 × 4 multiplication tensor  represents matrix multiplication of 2 × 2 matrices. It was shown that the rank and
 border rank of the tensor are both equal to 7 
 



Border rank

𝒯

𝒯1

𝒯2

𝒯3

Rank=2

Rank=3
𝒯= 0 1

1 0
1 0
0 0

𝒯 = e2 ⊗ 𝑒1 ⊗ 𝑒1 + e1 ⊗ 𝑒2 ⊗ 𝑒1 + e1 ⊗ 𝑒1 ⊗ 𝑒2

𝒯 has rank 3, but it can be approximated by rank 2 tensors 

lim
𝑛→∞

𝑛 ( 𝑒1 + 1

𝑛
 𝑒2) ⊗ ( 𝑒1 + 1

𝑛
 𝑒2) ⊗ ( 𝑒1 + 1

𝑛
 𝑒2) − 𝑛𝑒1 ⊗ 𝑒1 ⊗ 𝑒1 = 𝒯



Tensor Train Decomposition

Collage AIRI. Credit: iclcollective.com



Tensor Train Decomposition

figure source: Kour, Kirandeep, et al. "A weighted subspace exponential kernel for support tensor machines."



Tensor Train Decomposition

𝒳 ∈ ℝ𝐼1×𝐼2 ×⋯×𝐼𝑑Tensor Train factorizes a d-way tensor  into a sequence of 3-way tensors:

(𝑅0= 𝑅𝑑 = 1 )

The tuple of minimal integers (𝑅0, 𝑅1, … , 𝑅𝑑) for which equality holds is the TT rank of the tensor. 

෍

𝑖=1

𝑑

𝑅𝑖−1𝐼𝑖𝑅𝑖

Storage complexity

if we assume 𝑅𝑖 = 𝑅 and 𝐼𝑖 = 𝐼 ⟹ 𝑑𝑅2𝐼

storage requirement grows linearly with the number of modes, 
making it significantly more efficient than Tucker



Matrix Recovery 

Nuclear Norm for Matrices

Missing Data 
Completion

Nuclear Norm
Convex
surrogate of rank

min
𝑌

𝑟𝑎𝑛𝑘(𝑌)

s.t. XΩ = 𝑌Ω

min
𝑌

𝑌 ∗

                                  
s.t. XΩ = 𝑌Ω



Nuclear Norm (Trace norm) for Matrices

Main applications: collaborative filtering, low rank approximation, compressed sensing



Spectral Norm for Matrices – dual of the nuclear norm



The spectral norm measures the maximum stretching factor of the matrix, which corresponds to the
largest singular value. Applications include measuring sensitivity of linear systems, low rank approximation, 
data compression

Spectral Norm for Matrices – dual of the nuclear norm



Then the nuclear norm of 𝒳 is given by:  

nuclear decomposition

Nuclear Norm for Tensors

𝒳 is a 3-way tensor. 

𝒳 ∗ = 𝑚𝑖𝑛{ σ𝑖=1
𝑟 𝜆𝑖  : 𝒳 =  σ𝑖=1

𝑟 𝜆𝑖  𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖 , 𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖 = 1} 

promotes sparsity in the tensor's decomposition, encouraging 
simpler, low-rank representations of  multi-dimensional data.

Generalizes matrix nuclear norm to higher dimensions.



Then the spectral norm of 𝒳 is given by:  

Spectral Norm for Tensors

𝒳 is a 3-way tensor. 

𝒳 𝜎 = 𝑠𝑢𝑝{⟨ 𝒳, 𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖⟩, 𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖 = 1} 

Dual to tensor nuclear norm

Spectral Norm Rank 1 approximations

If 𝒴 is a best rank-1 approximation of the tensor 𝒳, then ‖𝒳- 𝒴‖𝐹   = 𝒳 𝐹  − 𝒳 𝜎



Comparison #1: NMF, PCA

NMF
good for 

datasets with 2 
dimensions

Tensor
Decomposition

good for datasets with 
𝑁 ≥ 2 dimensions

NMF is designed for 2-dimensional data

Flattens the data if dimensions > 2

Loss of interactions btw. different modalities

NMF is not unique

Assumes normally-distributed data

Rank selection is non-trivial 

Higher-dimensions = challenging interpretation



1000’s of training data   

Train 
NN 

Inference of patterns on a new dataset 
is as good as training data setLatent space interpretation is challenging

Comparison #2: Deep learning approaches



Need to give predefined conditions

Does not consider sample heterogeneity 

Comparison #3: Supervised DE methods



Multi-sample Gene expression data

Genotype-Tissue Expression (GTEx)  Portal
The TwinsUK cohort
 The Illumina Body Map – 16 different 
human tissues
The Cancer Genome Atlas (TCGA)  

Traditional approaches often assume that gene expression patterns remain consistent across different 
contexts or that samples are independent and homogeneous.

Structuring the high-dimensional genomics data as matrices poses several challenges:

• It may hinder the discernment of cell-type specific, tissue-specific, or individual-specific patterns.
• Inferring gene modules independently for each context might overlook shared characteristics among cell 

types or tissues and impede the identification of differentially expressed genes
• Neglecting individual heterogeneity, including biological factors like race, gender, and age, can compromise 

the accuracy of estimating correlations between genes and tissues.



Factorization 

Interpretation



Wang, Miaoyan, Jonathan Fischer, and Yun S. Song. "Three-way clustering of multi-tissue multi-individual gene expression 
data using semi-nonnegative tensor decomposition." The annals of applied statistics 13.2 (2019): 1103.

data: GTEx v6 gene expression data, consisting of RNA-seq samples collected from 544 individuals across 53 human tis-
sues, including 13 brain subregions, adipose tissue, heart, artery, skin, and more

𝟏𝟖, 𝟒𝟖𝟏 ×  𝟓𝟒𝟒 ×  𝟓𝟑 

Case study: MultiCluster

Clustering
Classification
Co-variate effects



Multi-omics data

• TCGA, GTEx, ENCODE 

• Human Functional Genomics 
Project (HFGP) 



weights

𝑟-th component 
expression pattern

𝑮𝑻 = [𝐺(1) 𝐺(2) … 𝐺 𝑅 ]

𝐷𝑇 = [𝐷(1) 𝐷(2) … 𝐷 𝑅 ]

𝑶𝑻 = [𝑂(1) 𝑂(2) … 𝑂 𝑅 ]

gene latent factor matrix

omics latent factor matrix

donors latent factor matrix

(𝐺 𝑟 ⊗ 𝐷 𝑟 ⊗ 𝑂 𝑟 ) 𝑖,𝑗,𝑘 = 𝐺𝑖
(𝑟)

𝐷𝑗
(𝑟)

𝑂𝑘
𝑟

Captures the interaction between i-th gene, 
j-th donor and k-th omics platform

𝑫 𝑮 𝑶



Case study: Monti

Applied to three case studies of 597 breast cancer, 314 colon cancer, and 305 stomach cancer cohorts.
Goal:  subtype classification such as for breast cancer Luminal A, Luminal B, Her2, and Basal.

Jung, Inuk, et al. "MONTI: a multi-omics non-negative tensor  decomposition framework for gene-

level integrative analysis."  Frontiers in genetics 12 (2021): 682841.

MONTI was able to detect subtype specific
 (or clinical attribute specific)gene sets that showed to be
 strongly regulated by certain omics, from which correlation
 between omics types could be inferred.

integrating multi-omics data in a gene centric manner improves detecting 
cancer subtype specific features and other clinical features!



Hodos et.al, Cell-specific prediction and application of drug-induced gene expression profiles, 2018 

capture multilinear 
relationships 
between drugs, 
targets, and 
diseases  

Data Imputation

Challenge



Case study: ScLRTC

An important challenge in analyzing genomics data is the high prevalence of zero
values, largely due to the “drop-out” effect.

Pan, Xiutao, et al. "ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion." BMC genomics 22 (2021): 1-19.

Compared methods: DrImpute, SAVER, scImpute, MAGIC, CMF-Impute and PBLR 

Data sets: published scRNA-seq datasets, including Usoskin, Pollen, Yan, Zeisel, Mouse and PBMC



Communication is the key!

….

Figure credit: https://www.amoebasisters.com/



1- Ligand-receptor (LR) interactions

- sender cell types
- receiver cell types
- LR-pairs
-  Multiple contexts 

Figure credit: https://www.khanacademy.org/



Case study: Tensor-cell2cell

Armingol, Erick, et al. "Context-aware deconvolution of cell–cell communication with Tensor-cell2cell."
Nature communications 13.1 (2022): 3665.

multiple biological contexts or conditions
(e.g., time points, study subjects, and body sites)

- Choice of the rank
- Stability of the  
factorization
- Probabilistic model
- Using spatial map 

Tensor-cell2cell can identify multiple modules associated 
with distinct communication processes (e.g., participating 
cell–cell and ligand-receptor pairs) linked to severities of
 Coronavirus Disease 2019 and to Autism Spectrum Disorder.
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