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Omics technologies, including genomics, transcriptomics, proteomics, and
metabolomics, have revolutionized biological research by enabling comprehensive,
high-throughput analysis of molecular components within cells and organisms. The
resulting high-dimensional datasets pose significant analytical challenges,
particularly in integrating diverse data types and uncovering complex biological
relationships. Tensor-based approaches have emerged as powerful tools for
analyzing these high-dimensional omics data, offering advantages over traditional
matrix-based methods in capturing complex, multi-way relationships.
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Monday 25 11:30-13:30 Room A108
Tuesday 26 15:30-17:30 Room A102
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The link will be shared to the registered participants.
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The era of
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The Human Genome Project

S S i Next generation sequencing
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The omics era

Bulk Single-cell
genomics genomics

Spatial
transcriptomics

12 tumor types
Omics characterizations
Breast (BRCA g,

Kidney (KIRC) - « = Mutation
Copy number

Gene expression

Platforms

DNA methylation
MicroRNA
RPPA

Thematic
pathwaysA/

Clinical data

Multi-omics data

donors X features X omics platforms




The omics era
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Multi-modal genomics data

tissue from tissue from

donor 1 donor 2
&

® > Cs . O
[ ) \,.’Ar
O

tissue from
donor 3

. individual cell

tissue from
donor 4

cell type I gene expression
I 4
BEC MALAT1 gl
B_cells TMSB4X | g2
CD4_T_cells BaM g3
CD8_T cells RPL10 gl
FDC RPL13A g5
Fibroblasts FTL g6
LEC RPS2 g7
[Macrophages ] RPS6 g8
Monocytes RPS18 9
NK cells g
Plasma_cells FTH1 g10
T other ACTB .
Tumor ' .
mDC .
pDC .
——

gene
capture
rates

000000000000000000

nmZImao

v
CELLS

#genes X #cells

How to represent
represent and study
this triple interaction
between genes, cell
types and donors



W7 \What is

a tensor?



What is a tensor?

A tensor is a generalization of matrices to higher dimensions. We will explore this generalization from two
perspectives:

LnEes e Matrices correspond to linear maps, whereas tensors correspond to multilinear maps.
algebra - We will introduce multilinear maps, tensor product spaces

Data
structure Tensors are multi-dimensional arrays, we will discuss representation of tensor data.




Tensors are multilinear maps

Let Uy, U, ..., U, be vector spaces. A function f: U; X U, X -+ X Uz — C is called multilinear if it is linear
In each variable.

Foranyu, € U,,...,ug € Uy f(:,uy,...,ug) = Cislinear. Sameforalll1 <i <d.

fQug, c,au; + bug, ..., ug) = af(uy, ..., v, ..., ug) + bf(uy, ..., uj, ..., ug)

The space of all multilinear maps is denoted by Uy & U; Q - Q U

Elements T e U7y Q U; Q ---Q U; are called tensors.



Tensor notations

Let X be tensor in CM*M2X" X4 then (iq, 1y, ..., ig)-th entry of X is denoted by X; 1

Order of  The order of a tensor is the number of dimensions, also known as ways or modes.
a tensor X in CMXM2XXNa i5 an order-d (d-way) tensor, it has d modes.

< i1 < nyq,..

— N N N N N |

Vectors are matrices are order-3 order-4
order-1 tensors order-2 tensors tensor tensor



Tensors are multi-dimensional arrays they can be considered
a.R.a. multi-linear maps as i

matrices to higher

Scalar Vector

Y ==
S aaa
a/aln/nlalal)
alalnne el
Ik
/i
s area

6d

Figure credit: Anima Anandkuma



Tensors: a compact way to represent multi-modal data

Cell Llnes

Individuals

C'S' ~glamy C’S’ Al %, L5
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Bioinformatics Computer Vision | Physics Somal Computing ' Machlne Learning * Chemistry




Tensor data

(Genes x Cell types x Donors)
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Tensor fibers

Fibers are generalizations of matrix rows and columns. A fiber is defined by fixing all but one index of a tensor.

Let X be a 3-way tensor of size 7 x5 X 8, then we can form fibers for each modality such as

X2 €C7, X3 € C°, X3y €CP

mode-1 mode-2 mode?3
column fibers row fibers tube fibers



Unfolding

T
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Slices
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Slices

1 4 7 10 13 16 19 22]
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Unfolding
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Outer product, Kronecker product

The vector outer product of a e Rl,b € R/ is a® b'= ab” € RI*J

The Kronecker product of A € R/, B € Rf*-

AR B =

albl
azbl

afbl

alpB
ang

a11£3

albz
G2bz

ajbz

GQ}B
GQ%B

Qm13

aib;
ang

CLIbJ

aLﬂB
aZﬁB

CLIJB

= RIXJ

E]R;KXJL

<« Rank 1 matrix

/
/

A®B=[G1®b1

aq ®bg

aJ®b1

Gg@b[,]



Kronecker product: examples (matrix direct product)

AcR™ BeRK*L = A:R' RN & B:R*—RF

Kronecker product constructs a bilinear map: A® B : R/*L 5 RI*K

Example: A= E Z] , — [g ?]
Kronecker product

B
ﬂ results in a block matrix

A® B =




Properties of Kronecker product

“ AR(B+C)=A®B+ARC

distributive
(A+B)C=AC+BC
a (A®B)@C=A®(B®C) associative
L
B C(49B) =(A®B=AB(B) ot ication

ﬂ (A®B)® (X ®Y)=(4X)® (BY) mixed product

for compatible matrices

ﬂ (AB)' =A"®B'

transpose



Properties of Kronecker product

A E Rmxm’ B e Rnxn

Ais are eigenvalues of 4, u;'s are eigenvalues of B, then eigenvalues of A ® B = {A;u;:V i, j}

Av; = A4;v; and Buj=pujvy, — (AR® B)(Ui X Uj) = (4v) & (Buj)

ARB)(vi®u)=Lv)®(hjy) = AR B)(v; ® uj) = 4 Hj( v; &Q Uj)

ﬁﬁ()\z‘ﬂj) = (ﬁ A?) ' (ﬁ #;n) — det(A® B) = (det A)" - (det B)™.



Properties of Kronecker product

@ ir(A® B) =tr(A)tr(B)

@ rank(A ® B) = rank(A) - rank(B).

column space of 4 is spanned by 1, = Rank(A4) linearly independent columns {ay, ..., ag,}

column space of B is spanned by rg = Rank(B) linearly independent columns {by, ..., bg,.}

column space of A @ B is spanned by {a; & by, ...,ag, & bg,}
® (A®B)"'=A"'®B™" if g4and B areinvertible.

® (A®B) =A@ B'

e (A® B)vec(V) =vec(BVA")



Khatri-Rao product, Hadamard product

The Khatri-Rao product of A € R™*X B € R/*K is the matching-columnwise Kronecker product

A@BZ[CL1®b1 a2®b2 aK@bK]ERIJXK

The Hadamard product of 4 € R/, B € R is the elementwise matrix product

a11b11  a2b1o ... OllJle

a21b21  ag2b2y ... OlszzJ
Ax B = , _ , , c RI*/

_aflbfl arobry ... aIJbIJ_



Properties of Khatri-Rao product

Matching columnwise Kronecker product- so previous properties listed for Kronecker product hold such as
associativity, distributivity

® (10B)0C=A0(B0C)

for other properties see Kronecker product

® (4+5)00=49C+50(

® (40B)'(A0B)=4"A+B'B

(Ao B)' (AeB)),. = ((a: ®b), (a; ® b))
(a; ® b, a; & bj) = (%%) . <biabj>

(A®B)' (A®B))..=(A"A).. - (B'B)...

1 1] 1



Properties of Khatri-Rao product

(A® B)T — ((ATA) X (BTB))T(A ® B)T first, we define the pseudoinverse

A e R™™ pseudoinverse of A is defined as a matrix AT € R™™ such that

“ AAt maps all column vectors of 4 to themselves AATA = A

g AT acts as a weakinverse ATAAT = Al
It should satisfy these 4 properties

for every matrix there is one and only
One pseudo-inverse

a ATA is Hermitian (ATA)* = ATA

“ AAT is Hermitian (AAT)* = AAT

We can also conclude AT = (A*A)TA*,



Properties of Khatri-Rao product

(A® B)T — ((ATA) X (BTB))T(A ® B)T for real matrices

(AG B)T =((A® B)T(A@ B))T(A @B)T we use the property A" = (A*A)TA*

= (A"AxB'B)(A0 B)' we use the property (A0B)'(A0B)=A"A+B'B



Mode-n product

X € Riv*dzx-xIn and A € R?*!"  then the mode-n product can be given as

E N Iy xIox.. X1y 1 XJIXIpi1X...X1
(XXTLA)Z]_’LQ A — 131,,”_'_1 AN - (X""l"'l2 Ay 'LNAJZ Rl 2 1 +1 N

< a every mode-n fiber is multiplied by the matrix A

mode-n product is related to a change of basis in the case when a tensor defines a multilinear map

Properties:

XunAxmB = XymBxnA (m #mn)  orderindependence across modes

XynAxnB = Xyn(BA) if the modes are the same



Mode-n product

We can also express it in terms of unfolded tensors: X, A =) <— A)c'(n) = Vi)

Example: 5 1- [1 2 3
4 5 6

we can multiply 7 and U

along 2th mode

1 4 7 1
To= (2 5 8 1
3 6 9 1

Notice that we expanded the second dimension

0
1
2

=

|

8
10 11 12

9

] = Tis2xXx3 X U=

T X, U= Yofsize2 X4 X2

UT(Z) =

(10 28

11 31

3
5

9
14

46
o1
15
23

64|

71
21
32

=Y

Y = O =
O = = O
= o W N

— Wwe need to reshape it

Common usage is reducing the dimension, i.e.,, compressing the tensor



Tensor inner product

For X, Y € R™>"2X X4 the inner product of tensors X, Y:

ni na nqg
<X, Y >= 7 7 7 Xijig..igYiqiy..ig

i1=1i=1 ig=1

For X € R™>™2X"XNd then the Frobenius norm of tensor X is given as

nqg 2
”x“F \[le 1 lZ 1° ld 1xi1i2__.id

Distance (or similarity) between tensors?

d(T,T)=I|T —T'|f (not a probabilistic approach, assumes normal noise)

(probabilistic approach) —-distance metric for tensors is an active research area,

Kullback-Leibner divergence we will discuss different distance/similarity matrices

Dy, (T|1T) = z T (z)log ;/((ZZ))
ZEZ




Symmetric tensors

Let V be a vector space of dimensionNandT €EVQRV ® -~ QV = yd
d times

T is ad-way tensor of size IN XN X X N ,then T is symmetric Til iyodg — Ta(il)a(iz)...a(id)

I d times for all permutation g € S,

N s¢ (V): set of the space of all symmetric tensors of order d defined on V
N
T SA(C™): set of all symmetric tensors of order d represents the space of
N symmetric tensors over C*
T123 = T132= T312= ny_ d (rn
T321 = T231=T213 $(CM)=Bq 5 (C) S(C™) space of symmetric tensors

Assume N > 3



Symmetric tensors :

T €S(C") & f(T) € Calxq, x2, %] (polynomial of degree d with n variables)

n

fr(xy, xg, o, Xp) = z f]"ll . ld' iy Xiy e X
~od--

b | ibdayeeydn)  gilial e gl

jl times j2 times jntimes j1+j2+'"+jn =d

d \ .
G ty) = z ( | ) T 30 2mn X X0 X
J In

1J2 - A

Jitj+tjp=d '/

jl times



Symmetric tensors :

Let M be symmetric matrix, M € S?(C™) - what is the corresponding homogeneous polynomial?

_ § : _ E : 2 Z
fM(.CUl, To,y... ,il')n) = Mi,jx@-xj = Mz,zﬂ'}% + 2M¢,j$@'$]’
1<4,5<n 1<i<n 1<i<j<n .
homogeneous quadratic

- polynomial with n variables
fu(zy, 2o, ... x,) =" Mz, where x = |1, %2, ..., Zy)

Example:
a b a bl |z note that x” M x appears in
_ — |1 x
M = [b c] = fulr,x;) = [ 1 2] [b c] |:$2] quadratic programming

=ax?+2abx;x, +cx32



Symmetric tensors :

T [3 111 O Tisa2x2 x2 symmetric tensor
1 010 4
J111=3 x13
T, Tioq=Toaqa=1 3x2 x fT(X1X2)=3x3+1*3x2x +0 * 3x; x2 + 4 * x5
112= Y121~ Y211~ 1 A2 ) 1 142 142 2
T122% J212% J221=0 3x1 X5 fr(x1,%5) = 3x3 + 3x%x, +4 x5
J222=4 3



Rank-1 tensor

rank 1 matrix
4

/
/

——

- 7N
The vector outer product of u € R™, v € R™ is(t\t Qv = uvi)e R™1 %72
\\__//

A d-way rank 1 tensor T of size ny X n, X -+ X ng is written as outer product of d vectors

ol
—— rank 1 tensor

T=u'lQu*® - Qu?, |
pure (simple) tensor

where u* e R%,1<i<d.

represents a separable signal which can be expressed as the

Ti1iz---id=ui11 ulz2 u?d combination of independent factors from each mode.



Rank-1 tensor

ul =[1,2,3] € R?
u? = [4,5,6,7 € R* T=u'Q@u*Qu’, Tijre =ui Q@ui @ uj,3 x4 x2tensor
u’ = [8,9] € R?

1 5 6 7 32 40 48 56
o 1 228112314 71T = 8 10 12 14| = |64 80 96 112
Fas Bu @ui=8123][4567] 8 [12 15 18 21] 06 120 144 168

- 4 5 6 7 36 45 54 63
Too— ut @u?=9[123][4567]= 8 10 12 14| =|72 90 108 126
12 15 18 21 108 135 162 189



Hidden variable models

independent random variables: rank 1 tensors

Given independent random variables Xy, X5, ... X4 with X; € {xl, X2, ...,xni} , their joint distribution can be written
as product of their marginal distributions:

P(X]_ — xl,Xz = 0Ly, ...,Xd — xd)=P(X1 - xl)P(XZ - x2) P(Xd — xd)

The joint distribution can be represented with d —way tensor I such that

T . = P(X, = x;,, X, =xl-2,...,Xd=xl-d) T=PX) QP(X) - Q P(Xy)

i1,ip,..i

rank-1 tensor naturally represents a system where each dimension corresponds to an independent random
variable, and the tensor entries represent the product of probabilities (or related measures) associated with each
independent variable.



Rank-1 tensor:

Assume that 7'y is arank 1 tensor of size N; X N X Ng where

N, = number of genes (20.000) Q\@ﬁ
N, = number of cell types (10) ga@@(\x
N, = number of samples (40) \é;eoy‘d
T1=9 Rc®s Celltypes
g : genes latent factor factor
c : cell types latent factor genes
latent
(Genes x Cell types x Samples) fact :
P P s : samples latent factor actor unit of an
expression

pattern

gRc®s



Samples/ patient groups cell types

B HLEBV+ HL: Hodgkin lymphoma v 8 :
HL EBV- EBV+ Epstein-Barr virus positive 88 8 2209,
EBV-: Epstein-Barr virus negative LIdeoB, 88858y,
RN RLN: Reactive Lymph node L8008 uss¥E 58
3?
Cx
% Samples latent factor
\°> \'o(
e R

> factor = 5 | mode = sample

Donor type influence

4 ekl Donor classification
atent 0
factor
genes Cell types latent
latent
factor! — factor = 5 | mode = celltype
\ o Clusters of
cell t
o o 0.0 T 1 T T 1 T T 1 ypes
Clusters of ‘ | .
[ J
Gene | @ -
Expression l l l JAK/STAT pathway promotes
G;”Q Gene tumor cell proliferation and survival of tumor cells
1 #2K



Conditionally independent variables

Suppose that the random variables X, X5, ... X; are conditionally independent, given Z =j.

The conditional distribution
@ P(X1, X, Xgl Z = ) = PO Z = P(X5| Z = J) . P(Xal Z = J)

The total distribution is obtained by summing over Z . Suppose Z € {1,...,r }, then the total
distribution has the structure as a sum of r rank-1 components:

o =

Ve

N
P(X1, X, o, X)= 2fes P(Z = PO Z = NPX| Z = ) o P(Xal Z = )

R
Tivigmia = P(X1= %1, X2 = Xip o, Xg = xy) = T = ZP(Z =PXIZ=))QPXNZ=))Q Q@ PXy4l Z =)
j=1

hidden variable distribution conditional distribution

Rank R tensor



Matrix factorization
X eR™" X~ AB' where A € R™" and B € R™*"

Singular Value Decomposition (SVD) T ————
extracts meaningful pattern

Decomposition into orthogonal matrices and singular values
X ~UAV' where U and V are orthogonal matrices (as in principal component analysis (PCA))

Non-negative matrix factorization (NMF)

X~ WH, W,H > 0 non-negativity constraints for interpretability applications in topic modeling

QR factorization factorization into orthogonal matrix Q and upper-triangular matrix R

X=0QR often used to solve least squares problems

LU Decomposition factorization into lower triangular matrix L and upper triangular matrix U

X = LU often used to solve linear systems



Eckart-Young theorem

For a given matrix A € R™*" of rank R with singular value decomposition (SVD) A = UXVT,
the best rank-k approximation A, in terms of the Frobenius norm or spectral norm, is given by:

k T
Ap =) . 1 ou,

7 7

where o; are the singular values of A (in descending order), and u; and v; are the corresponding
left and right singular vectors. This theorem ensures A; minimizes the approximation error:

[A=Axllr or [ A=Ay,

where || - || is the Frobenius norm and || - ||2 is the spectral norm.



Matrix factorization
collaborative filtering

e

10

10

10

10

10

e N o B

10

User-item Interaction Matrix

Q

2" yserF q,
X
- R;j =~ q; p;
4™ user|=q,
5t usert g 15t 3rd 5t
. . movie

movie movie -p

=P1 =P3 ;
User Matrix Item Matrix

Q) (P)

R (estimated rate of 2nd user) ~ g, p
23 for 3"*movie 2 b3

Latent features from the factorization capture correlations in previous
user-item interactions, enabling user and item matrices to approximate
these patterns and predict unknown ratings

"This example and figures are taken from (@ Codinfox



Low rank factorization
matrix case

Genes X cell types X Samples

/ /i ; :
L] T-” ) /// 3 jrl
Samples Slices | /7

o # v oy
z 72

. / |

Genes = 4 :
/ ¥
y : 3
Cell types i Cell types i Cell types

T(3) Samples

Unfoldings Genes

Samples

Samples

Samples

T(l) Genes

Cell types

Genes Genes Genes

T(Z) Cell types

Samples



Matrix factorization

000 ©
Samples i Samples i Samples
Genes ~  Genes X
Cell
types K
Factors
°
°
[ ]
°
Cell t atent fact |’ ‘ Cell type factor 1
R it ©LYPES AONt 1aciors l l ° l over each sample
A Cell Cell
: . : r Gene Gene types typ'es
: 5 . 2 : 1 QT #1 #oK ° . o
:+ e T i i l Gene latent factor #1 b
| | i=1 / | |
i ! Sample Sample

Genes latent factors #1 #6cy

_______________



Candecomp/Parafac (CP) Decomposition

Cell Types

Samples

Factors

Samples

e;, Class
O@

N Discovery '
Samples
Factors
Ng X R
Gene Ne X R
Factors

N, X R




CP Decomposition

Samples latent factor  Cell Type latent factor

Samples E /
I

Y

. 4
+...+ I _|_..._|_ I

Genes
Genes latent factor

noise assumption?
rank selection?
constraints?
uniqueness?

R
T =T"+ & where T’=z/1rgr®cr®sr

r=1

T7'=1G,C,S] where S = [s1 53 ...5g],C = [c1 ¢3 ...cr], G = [g1 82 ... gr]

we can concisely represent this factorization I'=[4; G, C, S]



Candecomp/Parafac (CP) Decomposition

el Polyadic form of a tensor
1927

Other names?

| CPD
T Parallel factor analysis (PARAFAC) rank approximation

Sl Canonical Decomposition (CANDECOMP, CAND)

LBl Topographic components model

SR CP(Candecomp/PARAFAC)

source: Tamara G. Koldat Brett W. Bader, Tensor Decompositions and Applications



CP Decomposition

For an N-way tensor T of size I; X I, X -+ X Iy, consider CP rank R approximation. We want to solve the following
problem:

min |77 —7"l|= z g2 where 7' = [2; AW, AP, AN], AW e R*R 1 < k < R, A =[A4, 2y, ..., Ag).

ijk

It is not a convex problem, but it can be given as N convex problems. For these, we need to consider the matricized
version of the approximation

T ~ 407 (A(N) ©) oo @) Ak+D) 0) Ak—1) Q0O A(l))T, 1<k <N,A=diag(1)

In the next slide- we will check it for order-3 tensor



CP-decomposition- traditional approaches

A common method for CP decomposition and other tensor-related optimization problems is
alternating least squares. We want to solve the following problem:

Fit (explained variance)=

min |7 —7"ll=_[¥jjkef where T'=[A;4,B,C]. 1 |7 -7
1Tl
It is not a convex problem, but it can be given as 3 convex problems.
min||T @ — A€ OB)T where T® is the mode-1 matricization of the tensor T,
min||7® — B(C © 4)T O denotes the Khatri-Rao" product - matching column-wise
C Kronecker product AOB=[a; ®b; a, @b, ...ar @b
mGirl T(B) _ C(B @ A)T [ 1 1 Y42 2 R R]

Other loss functions?

Kullback-Leibner divergence

D (7117 = Y T(Dlog ;Z )
ZEZ

Choice of the loss function or distance metric?

Stability of the factorization?



Tucker Decomposition

Cell types

Donors

df
N XM XK

}QXRZXR3

Donor
Fac tO ‘s Core tensor
K’xR3

Class
Discovery

N X R,
Gene
Factors Correlations between factors/clusters

M X R,




Tucker Decomposition

Samples latent factor  Cell types latent factor

Samples / \/ \ /
59111_ §_|_..._|_ gijk gR1R2R3

Genes

EL__Q%}E?_%_@?I@_S_L_.
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Tucker Decomposition

Let 7 € RIv*fz-xIn then Tucker decomposition can be given as

R1 Ry

Ty Y. Zgzm W @ ®... gdY

11=119=1 in=1

where AW = [a,(k) ®) .agﬁz] c R™*f and the core tensor G € Rf1*F2--xEn

We can concisely represent the approximation as T =~ gxlAE(l%AEf% ooy AW,

We can give the matricized version as the following

Tog ~ AWG (AN g ANV g | @ Ak AN g @A,




Tucker Decomposition - storage complexity

Storage for the core tensor = Ry - Ry - - - - - Ry.

N
Storage for factor matrices = Z(I’” - Ry).
n=1

If the ranks are uniform, i.e., R; = Ry = - -+ = Ry = R, then the storage complexity simplifies

to:

N
Total Storage Complexity = RY + Z(In - R).

n=1

Core tensor storage scales exponentially with the tensor order N, as it involves R,
*Factor matrix storage scales linearly with N, asitinvolves I,R for each mode n.



Tucker Decomposition

e Three-mode factor analysis (3MFA/Tucker3s)

Other names?
MassAs  Three-mode PCA (3MPCA) MLSVD

Leeuw, 1980

CREMCEE N-mode PCA

1986

kel Higher-order SVD (HOSVD)

et al., 2000

Vasilescu and N-mode SVD

Terzopoulos,
2002

source: Tamara G. Koldat Brett W. Bader, Tensor Decompositions and Applications



Tensor Rank

The rank of a tensor T, denoted rank(7), is defined as the smallest number of rank-one tensors needed to express
T as their sum. In other words, this is the smallest number of components in an exact CP decomposition.

The concept of matrix rank and tensor rank are different.

‘ Rank over different fields

Consider N-way tensor T € Fl1 *lzxXIN for F € C.

T = er1 A-gr Q ¢, ® s,., where 4., g,, s, € F, the smallest such R is called the rank of T over F, rankg(T).
If F= R, it is called real rank and if F= C, it is called complex rank.

The rank of a matrix remains consistent across different fields, but this property does not extend to higher-order tensors.

Example: & _ [1 0 _|0 1 . .
i1 0 1 T = 1 0 Tisa?2x2 x2tensor with rank 3 over real numbers, T = [4, B, C], where

10 1 10 1 1 10
Az[o 1 —1]’ BZ[O 1 1]’ and CZ[—1 1 1]

whereas it has rank 2 over C has the following factor matrices instead, 7 = [D, E, F]

0wl o=k 2 o 2



Tensor Rank

a There is no specific algorithm to determine the rank of a specific tensor; the problem is NP-hard.
a Typical and maximal ranks

The maximum rank is the highest achievable rank, whereas the typical rank is any rank that occurs with positive probability,
meaning it appears on a set with non-zero Lebesgue measure.

« For matrices of sizen X m, maximum rank=typical rank=-min(n, m) . For higher-order tensors, these two ranks can be differen

maximumrank: X ¢ RIXJxK rank(X) < min{lJ, IK, JK}.

for tensors of order d = 3,
maximal rank and typical rank can be different
there might be more than one typical rank over R

there is always one typical rank over C, which is called generic rank.



Uniqueness

Let X be n x m matrix with the factorization X=UVT,UeR*"* and V e R™*"

Assume that Q € R™ *" is an orthogonal matrix, then X=UQ (V)"

Thus, the presence of orthogonal transformations demonstrates that matrix factorizations are not unique.

« SVDis unique provided all the singular values are distinct
» For other factorizations, such as Non-Negative Matrix Factorization (NMF), strict conditions must be imposed
to ensure uniqueness.

CP decomposition is unigue under weaker conditions. Uniqueness means the factor matrices are uniquely determined, up to
scaling and permutation.

uniqueness up to T = Zfezl ar @ b, & c, =[A,B,C]=[PA, PB, PC] for any permutation matrix P of size R X R.
permutation

uniqueness up to

scaling T =Y (arar) @ (Brby)  (yrcr) = [A,B,C]l where aBryy =1,1 <1 <R.



CP uniqueness

Kruskal's result-sufficient condition

The k-rank of a matrix A, denoted k,, is defined as the maximum value k such that any k columns are linearly independent.
The rank R CP decomposition of a 3 -way tensor I’ = [A4, B, C] is unique if k, + kg + k¢ = 2R + 2.

Sidiropoulos and Bro extended Kruskal's result to N-way tensors.

The rank R CP decomposition of a N-way tensor T = [A®W, AP, .., AM]is unique if ¥¥_; ka0 = 2R+ (N — 1).

hecessary condition for unigueness of rank R decomposition of a N-way tensor

min rank( AD el A(n-1) @A(n+1) Do) A(N)) =R

1<n<N

simplifies the

rank(A O B) < rank(A ® B) < rank(A4) - rank(B) necessary condition

N
= min( Hm=1 rank(A(m))> > R.

m+n



Border rank

border rank(X) = min{r : for every € > 0 there exist a tensor X such that || X — X|< 0}

border rank(X)< rank(X)

» for matrices border rank = rank. Set of tensors of rank at most r is not closed forr > 2.
* jtdoesn't hold for tensors.

Strassen'’s algorithm for matrix multiplication relies on tensors with lower border rank to reduce computational complexity.

C.

Matrix multiplication tensor: T : R™*" x R"*P — R™*P given by 7 (A, B)

4 x 4 x4 multiplication tensor represents matrix multiplication of 2 x 2 matrices. It was shown that the rank and
border rank of the tensor are both equal to 7



Border rank

T=ez®el®el+el®ez®el+el®el®ez

T has rank 3, but it can be approximated by rank 2 tensors

lim n (e + 7€) ® e+ e2) @ (et ex)-nei®@e; @ey =7

Nn—>00
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Tensor Train Decomposition

Collage AIRI. Credit: iclcollective.com



Tensor Train Decomposition

figure source: Kour, Kirandeep, et al. "A weighted subspace exponential kernel for support tensor machines."



Tensor Train Decomposition

Tensor Train factorizes a d-way tensor x € Rlixz xxla into a sequence of 3-way tensors:

T S (1) (2) () (Ro=Rq=1)
Xﬁlﬂ?:"'&?’d ~ gRDﬂ.'l:Rl gRl:i21R2 S ng—l:id:Rd’
Ro,R1,...,Rq

where each core G¥) € REx—1%Ie xRk for 1 < k < d.

The tuple of minimal integers (R, R4, ..., Rgz) for which equality holds is the TT rank of the tensor.

Storage complexity storage requirement grows linearly with the number of modes,
making it significantly more efficient than Tucker
d

Z R;_1liR; if weassumeR; =Randl; =1 = dR?I
i=1



Nuclear Norm for Matrices

Matrix Recovery

Missing Data
Completion

min rank(Y) . inn”Y”*

s.t. XQ = Y_Q s.t. XQ = YQ

‘ Nuclear Norm > Convex

surrogate of rank




Nuclear Norm (Trace norm) for Matrices

The nuclear norm (also called the trace norm) of A is defined as:

.
|4l =) o,
i=1

where o; are the singular values of A.

Properties

1. Convexity: The nuclear norm is a convex function, making it useful in optimization problems.
2. Dual Norm: The nuclear norm is the dual of the spectral norm (the largest singular value).

3. Low-Rank Promotion: Minimizing the nuclear norm encourages solutions with lower rank, as

the nuclear norm serves as a convex relaxation of the rank function.

Main applications: collaborative filtering, low rank approximation, compressed sensing



Spectral Norm for Matrices

The spectral norm is the largest singular value of the matrix 4, i.e.,
||A||2 — Umax(A)a

where 0., (A) is the largest singular value of A.

For the nuclear norm: The nuclear norm is the dual of the spectral norm because the

following holds for all matrices A and B:
(A,B) = Tr(A'B),
where (A, B) is the Frobenius inner product, and:

|A||« = sup(A, B) subject to ||B]l2 < 1.
B

In other words, the nuclear norm of a matrix is the maximum of the Frobenius inner product

over all matrices B whose spectral norm is less than or equal to 1.

For the spectral norm: Conversely, the spectral norm is the dual of the nuclear norm

because:

|A||]2 = sup(A, B) subject to ||B]. < 1.
B



Spectral Norm for Matrices

The spectral norm measures the maximum stretching factor of the matrix, which corresponds to the
largest singular value. Applications include measuring sensitivity of linear systems, low rank approximation,
data compression

Properties

1.

Sub-multiplicativity:
The spectral norm satisfies || AB||2 < || Al|2||B]

most the product of the norms.

2, meaning the norm of the product is at

Dual Norm:

The spectral norm is the dual of the nuclear norm, which is the sum of the singular values.

Operator Norm:
The spectral norm represents the largest stretching factor of a matrix, given by

max | Az s/ 2]l

Computational Complexity:
The spectral norm, the largest singular value, is computed using SVD or methods like the

power method.



Nuclear Norm for Tensors

Generalizes matrix nuclear norm to higher dimensions.

X Is a 3-way tensor.
Then the nuclear norm of X is given by:

X[ =min{ Xi_114;i] : X = Y1 4w @ v; Q wy, llu; @ v; @ wyll = 1}
#

nuclear decomposition

promotes sparsity in the tensor's decomposition, encouraging
simpler, low-rank representations of multi-dimensional data.



Spectral Norm for Tensors

Dual to tensor nuclear norm

X Is a 3-way tensor.,
Then the spectral norm of X is given by:

I Xl =sup{{ X, u; ® v & wy), [lu; & v; & wyl| = 1}

‘ Spectral Norm ’ Rank 1 approximations

If Y is a best rank-1 approximation of the tensor X, then || X-Y||r = \/IIXIIF -1 X1,



Comparison #1: NMF, PCA

Tensor NMF is designed for 2-dimensional data
Decomposition Flattens the data if dimensions > 2

good for datasets with Loss of interactions btw. different modalities
N = 2 dimensions

NMF is not unique

Assumes normally-distributed data

NMF

good for
datasets with 2
dimensions

Rank selection is non-trivial

Higher-dimensions = challenging interpretation



Comparison #2: Deep learning approaches

R tructed
Input <o |deally they are identical. ------------------ > ecoir:‘:l:ttjc ¢
X~ x
1000's of training data
Bottleneck!
Encoder Decoder ,
X > .
9o fo X

An compressed low dimensional
representation of the input.

l

_ L ] Inference of patterns on a new dataset
Latent space interpretation is challenging is as good as training data set




Comparison #3: Supervised DE methods

Expression level

O Global m

Group mean . g
. P Significant
. Condition A data difference

. Condition B data

No significant difference

Need to give predefined conditions

Does not consider sample heterogeneity



Multi-sample Gene expression data

A Tensorization

Cren

A AL e S| Ml

i ¢ Cermrn v Coll Typas

Py s b yepm

— g gy —

.-';-'._.'.

Genotype-Tissue Expression (GTEx) Portal
The TwinsUK cohort

The Illumina Body Map - 16 different
human tissues

The Cancer Genome Atlas (TCGA)

Traditional approaches often assume that gene expression patterns remain consistent across different
contexts or that samples are independent and homogeneous.

Structuring the high-dimensional genomics data as matrices poses several challenges:

* It may hinder the discernment of cell-type specific, tissue-specific, or individual-specific patterns.
* Inferring gene modules independently for each context might overlook shared characteristics among cell

types or tissues and impede the identification of differentially expressed genes

» Neglecting individual heterogeneity, including biological factors like race, gender, and age, can compromise
the accuracy of estimating correlations between genes and tissues.



Factorization
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18,481 x 544 x 53

b. Input tensor

normalization £
R—
imputation

individuals
individual

Case study: MultiCluster

¢. Semi-nonnegative tensor decomposition
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Clustering
Classification

Co-variate effects

meta data

GO annotation

tissue labels

Sex, age, race

e. Characterization of the identified three-way clusters

—> Testing for enriched GO terms

—> |dentifying top tissues with high loadings

Testing for correlation with clinic attributes (e.g., sex,
age, and race)

data: GTEx v6 gene expression data, consisting of RNA-seq samples collected from 544 individuals across 53 human tis-
sues, including 13 brain subregions, adipose tissue, heart, artery, skin, and more
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Wang, Miaoyan, Jonathan Fischer, and Yun S. Song. "'Three-way clustering of multi-tissue multi-individual gene expression
data using semi-nonnegative tensor decomposition." The annals of applied statistics 13.2 (2019): 1103.



Multi-omics data
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Factors — R

<+— Donors —»

DT =[D® p@ _ p®)] donors latent factor matrix
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Captures the interaction between i-th gene,
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Case study: Monti

Applied to three case studies of 597 breast cancer, 314 colon cancer, and 305 stomach cancer cohorts.
Goal: subtype classification such as for breast cancer Luminal A, Luminal B, Her2, and Basal.

Gene expression (0,)
9o

=
e
~
3

o
=

Methylation level (o,)

o 9 Sm Wm szeae 2 MONTI was able to detect subtype specific
OEaE0aaT W NEE P “@a @ 0:" M (or clinical attribute specific)gene sets that showed to be
z m e ® @ &gs @ o, 88 strongly regulated by certain omics, from which correlation
; : ﬁiﬂff?gg between omics types could be inferred.
9n n L | - ﬁ
Tensor T Gene component C, Sample component ¢, Omics component C,

integrating multi-omics data in a gene centric manner improves detecting
cancer subtype specific features and other clinical features

Jung, Inuk, et al. "MONTI: a multi-omics non-negative tensor decomposition framework for gene-
level integrative analysis." Frontiers in genetics 12 (2021): 682841.



Data Imputation

A. Tensor construction  Mssing data B. Cross-validation
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Hodos et.al, Cell-specific prediction and application of drug-induced gene expression profiles, 2018




Case study: SCLRTC

An important challenge in analyzing genomics data is the high prevalence of zero
values, largely due to the "drop-out” effect.

Data sets: published scRNA-seq datasets, including Usoskin, Pollen, Yan, Zeisel, Mouse and PBMC

Compared methods: Drimpute, SAVER, scimpute, MAGIC, CMF-Impute and PBLR

N samples (cells) N samples (cells) Updated N samples(cells)
of KM matrix of KM P Tensor of KM ~P Tensor
N cells | N cells
Euclldean
% Cosine Tensor -
5 Pearson N . Cheb\ shev Imputatlon . Extract %’
=10 . .
= K-Nearest” . P-Nearest ~ ADM]\/I . Integration ;’

cells matrix
N E E m N
|

Pan, Xiutao, et al. "ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion." BMC genomics 22 (2021): 1-19.




Communication is the key!

| love mango
smoothies that
are super sour.




1- Ligand-receptor (LR) interactions

SENDNG CELL | [TAreeET CELL)

[ NON-TARGET CeLL
¢ no receptor f3r (Z-jand

- sender cell types
- receiver cell types
- LR-pairs

- Multiple contexts

C\ewvwarvcal\
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ve\ay e
6\%m\

Figure credit: https://www.khanacademy.org/



Case study: Tensor-cell2cell

LR-Pair 1 LR-Pair 2 LR-Pair K

HEE EENE EEE

Ligand-Receptor Pairs Ex?res’s'i(én Matrix
of n-th Context
HER |
Sl HEN - | |
g RN Tensor-cellacell can identify multiple modules associated

cP\\ & @

Cells / 11‘
ells Issues !. . —
. ii Cell 2 |
Communication Score of a LR-Pair E
L’f J e

Ligand in i=th cell, Receptor in j-th cell) ———

LR-Pair K

with distinct communication processes (e.g., participating
cell-cell and ligand-receptor pairs) linked to severities of
Coronavirus Disease 2019 and to Autism Spectrum Disorder.

s G =
~|

Sender Cells

20

Receiver copg \R-¥

3D-Communication Tensor of n-th Context

Context 1 Context 2 Context N

Factor 1 Factor 2 Factor R

-+ St

- 4D-Communication Tensor _ Choice o f the rank
Vectors of r-th Factor - Stability Of the
: factorization
EII. m | i | M h“llll - Probabilistic model
4D-Communication Tensor v Sender Gell Rocelver el - Using Spatial. map

Armingol, Erick, et al. "Context-aware deconvolution of cell-cell communication with Tensor-cell2cell."

multiple biological contexts or conditions
Nature communications 13.1 (2022): 3665.

(e.g., time points, study subjects, and body sites)
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