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CP Decomposition

𝓣Samples
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≈
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Samples latent factor

𝜆1𝑔1⊗𝑐1⊗𝑠1

𝜆1 𝜆𝑖 𝜆𝑅

𝒯 = 𝒯′ +  𝜀 where

𝒯′= 𝐺, 𝐶, 𝑆  where 𝑆 = 𝑠1 𝑠2 … 𝑠𝑅 , 𝐶 = 𝑐1 𝑐2 … 𝑐𝑅 , G = [g1 g2 … 𝑔𝑅]

𝓣′ =
noise assumption?

        rank selection?
         constraints?
        uniqueness?



CP-decomposition– traditional approaches

min
𝒯′

𝒯 − 𝒯′ = σi,j,k εijk
2    where 𝒯′= 𝐺, 𝐶, 𝑆 .

A common method for CP decomposition and other tensor-related optimization problems is  
alternating least squares. We want to solve the following problem: 

It is not a convex problem, but it can be given as 3 convex problems. 
 

min
𝐺

𝒯(1) − 𝐺 𝐶 ⊙ 𝑆 𝑇

min
𝐶

𝒯(2) − 𝐶 𝑆 ⊙ 𝐺 𝑇

min
𝑆

𝒯(3) − 𝑆 𝐶 ⊙ 𝐺 𝑇

where 𝒯(𝑖) is the mode-1 matricization of the tensor 𝒯,
⊙ denotes the ``Khatri-Rao” product – matching column-wise 
Kronecker product 𝐶 ⊙ 𝐺 = [ c1 ⊗ 𝑔1 𝑐2 ⊗ 𝑔2 … 𝑐𝑅 ⊗ 𝑔𝑅]

Fit (explained variance)=

 1 −
𝒯 −𝒯′

𝒯 
 

Choice of the loss function or distance metric?
 
       Stability of the factorization? 

Kullback-Leibner divergence

𝐷𝐾𝐿 (𝒯| 𝒯′ = ෍

𝑧∈𝑍

𝒯 𝑧 𝑙𝑜𝑔
𝒯(𝑧)

𝒯′(𝑧)

Other loss functions? 



MLE & Bayesian approach 

Maximum Likelihood Approach 

𝑎𝑟𝑔𝑚𝑖𝑛𝑆,𝐶,𝐺 𝑑(𝒯, 𝒯’)

s.t. constraints on the latent 
factor matrices 𝑆, 𝐶, 𝐺 

loss functions: 

𝑑(𝒯, 𝒯’)= 𝒯 − 𝒯′

Kullback-Leibner divergence

𝐷𝐾𝐿 (𝒯| 𝒯 = ෍

𝑧∈𝑍

𝒯 𝑧 𝑙𝑜𝑔
𝒯(𝑧)

𝒯′(𝑧)

Bayesian Approach

Given the observed tensor 𝒯 ≈ 𝐴, 𝐵, 𝐶 .The goal is to 
estimate the posterior distribution of the factor matrices
 (A, B, C) given the observed tensor 𝒯 and any prior 
information you might have. 

Prior distributions are specified for the factor 
matrices– via model hyperparameter set ℋ
The posterior 𝑃 𝐴, 𝐵, 𝐶 𝒯, ℋ)

latent factors hyperparameter setobserved tensor

The posterior distribution is analytically intractable and
 must be approximated 

Techniques like
 Markov Chain Monte Carlo (MCMC) 
 Variational Inference (VI) 



Border rank

𝒯

𝒯1

𝒯2

𝒯3

Rank=2

Rank=3
𝒯= 0 1

1 0
1 0
0 0

𝒯 = e2 ⊗ 𝑒1 ⊗ 𝑒1 + e1 ⊗ 𝑒2 ⊗ 𝑒1 + e1 ⊗ 𝑒1 ⊗ 𝑒2

𝒯 has rank 3, but it can be approximated by rank 2 tensors 

lim
𝑛→∞

𝑛 ( 𝑒1 + 1

𝑛
 𝑒2) ⊗ ( 𝑒1 + 1

𝑛
 𝑒2) ⊗ ( 𝑒1 + 1

𝑛
 𝑒2) − 𝑛𝑒1 ⊗ 𝑒1 ⊗ 𝑒1 = 𝒯



Border Rank 

min
𝑆,𝐶,𝐺

𝒯 − ෍

𝑖=1

𝑟

𝑠𝑖 ⊗ 𝑐𝑖 ⊗ 𝑔𝑖 𝑤ℎ𝑒𝑟𝑒 

S=[𝑠1 … 𝑠𝑟], 𝐶 = [𝑐1 … 𝑐𝑟], 𝐺 = [𝑔1 … 𝑔𝑟].

min
𝑆

𝒯(1) − 𝑆 𝐶 ⊙ 𝐺 𝑇

min
𝐶

𝒯(2) − 𝐶 𝐺 ⊙ 𝑆 𝑇

min
𝐺

𝒯(3) − 𝐺 𝐶 ⊙ 𝑆 𝑇

rank 3 approximation for 
tensor of size 3 × 4 × 5

Numerical instability

Convergence Problems

CP-ALS 

Dependence
on the Initial Guess

fit

run number𝒯 = ෍
𝑖=1

𝐼1

෍
𝑗=1

𝐼2

෍
𝑘=1

𝐼3

𝒯𝑖,𝑗,𝑘*Note: 2

𝒯

𝒯1
𝒯2

𝒯3

Rank=2

Rank=3



Tensor decomposition: its limitations

• Decomposition is not stable

• Convergence is not guaranteed 

• Rank selection is a challenge 

• Uses assumptions that do not hold on real data sets

• Needs a pipeline for interpretation of latent factors

Without custom pipeline: more capable than traditional methods

With custom pipeline: outperforms existing tensor methods



Numerical instability and convergence problems 

Rank selection is challenging

Interpretation of the factors can be difficult

1

2

3

4 Incorporating true distribution of the data



GENES

Consensus based tensor factorization
rank selection 
stable factorization 

…

G1              G2              GM

1 2 3 …       R 1 2 3 …     R 1 2 3 …      R

Gene 
consensus

median

1 2 3 …                    R

 clustering

Consensus 
factorization

N𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒈𝒆𝒏𝒆𝒔 ×

ScCcGc

Run #1 Run #2 Run #M

 𝑴 × 𝑹

TF 

connectivity matrix 𝑪𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚𝒌, 1 ≤ 𝑘 ≤ 𝑀
𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑘 𝑖, 𝑗 = 1 gene 𝑖 and gene 𝑗 
belong  to same cluster and 0 otherwise. 
 

Consensus matrix 𝑪𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔 𝒊, 𝒋 =
probability of gene 𝑖 and gene 𝑗 cluster together
average of connectivity matrices

Evaluate dispersion
 between 0 and 1 and 
calculate cophenetic 
correlation 

Measure the 
``goodness of 
clustering”



Consensus based tensor factorization



Bayesian Tensor Factorization
• The  counts T are modeled as draws from a Poisson (or Zero Inflated 

Poisson) distribution. The mean for 𝑇𝑖𝑗𝑘 is given by  𝑇′𝑖𝑗𝑘 where

 𝓣 ≈ 𝓣′ = 𝑮, 𝑪, 𝑺 = σ𝒓=𝟏
𝑹 𝒈𝒓 ⊗ 𝒄𝒓 ⊗ 𝒔𝒓

 𝓣𝒊𝒋𝒌 ≈ 𝑷𝒐𝒊𝒔𝒔𝒐𝒏 (𝝀 = σ𝒓=𝟏
𝑹 𝒈𝒓𝒊𝒄𝒓𝒋 𝒔𝒓𝒌) 

• We set a Gamma Prior on each entry of the factor matrices S, C and G, 
and a gaussian prior on the gate parameter in the ZIP model that 
controls the zero inflation. 

Generative model:
 𝑺 ~ 𝑮𝒂𝒎𝒎𝒂 𝜶𝒔, 𝜷𝒔

 𝑪 ~ 𝑮𝒂𝒎𝒎𝒂 𝜶𝒄, 𝜷𝒄

 𝑮 ~ 𝑮𝒂𝒎𝒎𝒂 𝜶𝒈, 𝜷𝒈

     
 𝐩 ~ 𝑵 𝝁, 𝝈

𝓣𝒊𝒋𝒌 ≈ 𝒁𝑰𝑷( 𝝀 = ෍

𝒓=𝟏

𝑹

𝒈𝒓𝒊𝒄𝒓𝒋 𝒔𝒓𝒌 , 𝝓 = 𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝒑))

• Potential benefits of Bayesian inference compared to the more 
prevalent maximum likelihood estimation approach include

I

K

𝑇𝑖𝑗𝑘

𝑆𝑖 𝐶𝑗

𝐺𝑘

𝛼𝑐

𝛼𝑔

𝛼𝑠

𝜇0

𝜇0
𝛼0

𝛽𝑠

𝛽𝑔

𝛽0

𝛽0𝛽0

𝜙

𝛽𝑐

Graphical model for BTF of a third order tensor

J

• uncertainty quantification, 
• incorporation of more realistic noise assumptions, and 
• a principled way to include prior information

Note: To maximize the evidence lower bound (ELBO), we employ a stochastic 
optimization algorithm known as the Black Box Variational  Inference. This 
algorithm operates by stochastically  optimizing the variational objective using 
Monte Carlo samples from the variational distribution to compute the noisy 
gradients. It effectively alleviates the burden of analytic computations and 
provides a more efficient approach to ELBO maximization.

excess zeros



Synthetic tensor experiments for Zero-inflated Poisson Factorization

ZIPTF: Zero-inflated Poisson factorization
NNCP-ALS: Non-negative CP decomposition via alternating least squares
GPTF: Gamma-Poisson tensor Factorization
TGTF: Truncated Gaussian tensor factorization

𝜒 = 𝐴, 𝐵, 𝐶 = ෍

𝑟=1

𝑅

𝑎𝑟 ⊗ 𝑏𝑟 ⊗ 𝑐𝑟,  𝐴 ∈ ℝ𝐼 × 𝑅 , B ∈  ℝ𝐽 × 𝑅 , C ∈  ℝ𝐾 × 𝑅. 

with elements drawn from a Gamma distribution 𝛼 = 3, 𝛽 = 0.3, we generate 𝜒′ by sampling from a ZIP distribution with
mean 𝜒 and varying probability extra zeros. 𝐼, 𝐽, 𝐾, 𝑅 = (10,20,300,9)

Φ = 0.6

100 runs of ZIPTF and Consensus ZIPTF

b. Cosine similarity between factors obtained on repeat
 runs for ZIPTF and C-ZIPTF,
c. Cosine similarity between factors from 100 runs 
to original signal
 



Application 1:  multi-donor multi-cell type expression data

Splatter simulation to generate the synthetic single-cell RNA sequencing dataset. The simulation framework utilizes a 
Gamma-Poisson hierarchical model with hyper-parameters estimated from real data. 

• 3,000 cells, 1,000 genes ,six donors
•  five gene expression programs defining cell type identities 
• three gene expression programs defining donor-specific activity 

simulated data rank selection

𝒯Donors

Cell Types

1000 × 3000 × 6



Recovery of gene expression programs

𝒯 ≈ 𝐺, 𝐶, 𝑆  where 𝑆 = 𝑠1 𝑠2 … 𝑠8 , 𝐶 = 𝑐1 𝑐2 … 𝑐8 , 
𝐆 = [𝐠𝟏 𝐠𝟐 … 𝒈𝟖] – derived gene latent factors



NMF: Non-negative matrix factorization
LDA: Latent Dirichlet Allocation

Recovery of gene expression programs



Unsupervised discovery of disease subgroups and multicellular gene expression programs in
the peripheral blood of patients with systemic lupus erythematosus (SLE)

dataset:  C-ZIPTF to a multiplexed scRNA-seq (mux-seq) to profile over 1.2 million PBMCs from patients with 
systemic lupus erythematosus (SLE) and healthy controls 

Downsampled to 85,636 cells:  8 SLE patients with flare, 8 SLE 
patients with managed disease, and 8 healthy controls. 
cell types: CD4-positive alpha-beta T cells, CD8-positive alpha-beta 
T cells, classical monocytes,conventional dendritic cells, and NK cells

Cell Types

𝓣
Donors

𝑑𝑜𝑛𝑜𝑟𝑠 × 𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠 
× 𝑔𝑒𝑛𝑒𝑠 

24 ×  5 × 13, 525

rank selectionpseudobulk  tensor



Cell type identity Gene Expression Programs

sample factors cell type factors top 20 genes



Condition Specific Gene Expression Programs
Type 1 –interferon pathway 
observed in viral infections

active flare

SLE patients

active flare

The number of differentially expressed genes (DEGs) was 
55 when comparing all SLE patients against healthy donors 
and 122 when comparing SLE patients with an active flare
against healthy donors



Scenarios where the source of intra-group 
heterogeneity is unknown, C-ZIPTF can 
highlight subgroups based on expression 
profiles and identify the GEPs driving 
heterogeneity that may be missed by 
supervised differential gene expression analysis.

Takeaway:



Chafamo, Daniel, Vignesh Shanmugam, and Neriman Tokcan. 
"C-ziptf: stable tensor factorization for zero-inflated multi-dimensional genomics data.” 
BMC bioinformatics 25.1 (2024): 323.

Vignesh Shanmugam Daniel Chafamo

Broad Institute
Upenn Medical School

Broad Institute



2 Tumor
Microenvironments



Tumors are complex
cellular ecosystems

Adapted from Tirosh, I. & Suvà, M. L. Annu Rev Cancer Biology 3, 1–16 (2018)

Tumor microenvironment (TME)

Diverse malignant cell states

Diverse non-malignant cell types & states

Genetic and non-genetic 
heterogeneity

T cells NK cells Macs Stromal

Complex cell-cell
interactions



Classical Hodgkin Lymphoma (CHL)

Malignant B Cells
a.k.a. Hodgkin Reed 

Sternberg Cells 

They comprise only ~1% 
of the tumor volume

Strong
Dependence on
Microenvironment

Difficult to grow in culture

Do not survive in immunodeficient mice

Present in an extensive background of immune cells…
…yet continue to grow and proliferate



• Malignant B cells of Hodgkin lymphoma are dependent on the native 
tissue microenvironment for survival and evade anti-tumor immunity

• We are interested in isolating the gene expression programs that 
characterize the altered cell states of immune and stromal cells in 
Hodgkin lymphoma patients.

• To address this question, we utilize a Single nucleus RNA-Seq (slide-tags 
protocol) dataset of 15 human samples from a clinically annotated patient 
cohort:

 10 Hodgkin lymphoma patients  (≥2 replicates)
               5 Epstein–Barr virus (EBV) positive
               5 Epstein–Barr virus (EBV) negative

 5 reactive lymph nodes (≥2 replicates)

• We recover 320,000 nuclei after quality control (nUMI > 400, nGene > 200, 
%MT < 5, ambient RNA correction and doublet filtering)

• 15 cell types were annotated manually

             

Malignant B 
Cells
(Hodgkin Reed 
Sternberg Cells)

ISurrounding immune cells

U
M

A
P

2

UMAP1

Application to multi-donor Hodgkin Lymphoma single nucleus dataset



Cell types

D
on

or
s

Cell types Genes

Fa
ct

o
rs

Single cell/nuclei

Pseudobulk tensor

Donors

D1 D2                    DI C1 C2                    CJ

Classic Hodgkin Lymphoma

Diverse malignant cell states

Diverse non-malignant cell types & states

15 cell types  
19,875 genes
40 donors
2 conditions
 - Classic Hodgkin Lymphoma
• Epstein-Barr Virus Positive
• Epstein- Barr Virus Negative
 - Reactive lymp nodes 

19,875x 15 x 40
 (Genes x Cell types x Donors)
 



Cell types

D
o

n
o

rs

Cell types Genes

Fa
ct

or
s

Single cell/nuclei Pseudobulk tensor

Donors

D1 D2                    DI C1 C2                    CJ

Method Overview

Benefits of the method:

• De novo discovery of gene expression 
programs that vary across cell types and donor 
conditions

• Unsupervised stratification of donors into 
subgroups  and identification of GEPs that 
drive those stratifications

Our paper will be available on bioRxiv! 

Title: "Genome-scale spatial 
mapping of the Hodgkin lymphoma 
microenvironment identifies factors 
required for tumor cell survival"
 



Donors

Cell types

G
en

es

Single Cells

G
en

es

Pseudo-bulks

Genes

Cell types

Donors

Pseudobulk tensor formation

• Given a cell by gene matrix, wherein cells are annotated by cell type 
and donor, we create a pseudobulk tensor by aggregating the raw 
counts for each cell type, donor, and gene. 

• The resulting pseudobulk data tensor has dimensions S x C × G, 
where S denotes the number of samples(donors), C the number of 
cell types and G the number of genes. 

• We normalize the tensor such that each sample-cell type pair has a 
total of 10,000 counts.  

• For the Poisson and Zero Inflated Poisson models we round the 
counts to the nearest integer to align with the support for the models. 

JW Squair, et al. Confronting false discoveries in single-cell differential 
expression. Nat Commun 12(1):5692.

Gene filtering

• In order to facilitate biological interpretability of factors and reduce 
noise in the tensor formed we removed genes using the following to 
criteria:

1. Filter out genes that we not provided with HGNC 
(HUGO Gene Nomenclature Committee) symbols 

2. Filter out genes with less than 10 total count across all 
cells



Application to multi-donor Hodgkin Lymphoma single nucleus 
dataset

By pseudo-bulking we created a tensor with dimensions 40 x 15 x 19,875 (Donors x Cell types x Genes)
 
Explained variance of factorization went from a low of 0.627 at rank 2 to a high of 0.952 at rank 40

We run the algorithm 100 times to check the stability 

At which rank we have stability? 

J.P. Brunet, P. Tamayo, T.R. Golub, J.P. Mesirov, and E. S. Lander,Metagenes and Molecular Pattern Discovery 
Using Matrix Factorization, Proceedings of the National Academy of Sciences (2004)



Assigning genes to factors

Kim, Hyunsoo, et al. Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares for microarray data analysis. Bioinformatics 23, 
12:1495-1502, 2007.

To select factor specific genes, we use two metrics:

1. Entropy 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑖 =  1 +
1

log2 𝑅 
෍

𝑗=1

𝑅

𝑃 𝑔𝑖 , 𝑓𝑗 log2 𝑃 𝑔𝑖 , 𝑓𝑗

           where R = rank and 𝑃 𝑔𝑖 , 𝑓𝑗  is the probability that the gene i contributes to factor j.

• The higher the entropy the more factor-specific the corresponding gene. 
• We set a threshold of median + 3*Median Absolute Deviation to filter for high entropy genes

2.  Max Loading

• To exclude genes that are overall too lowly expressed we filter out genes whose maximum 
loading across all factors is less than the median of all loadings.

cutoff [0.47 = median + 3 x MAD ]

cutoff [1.25 = median of all loadings]



Interpretation of recovered factors - Rank 12

• At lower ranks, the factors mostly pick up cell type identity gene expression programs.
• The genes associated with the factors are canonical cell type marker genes.
• Factor 5 which loads only on tumor cells from Hodgkin Lymphoma samples, identifies the tumor identity gene expression program.

Sample mode

Cell type mode

40x 15 x 19,875
Donors x Cell types x Genes



g

d

genes 
latent 
factor

Cell types 
latent 
factor

Samples latent factor

Cell types latent 
factor

Gene
#1

Gene
#2K

JAK/STAT pathway promotes
 tumor cell proliferation and survival of tumor cells

HL: Hodgkin lymphoma
EBV+: Epstein-Barr virus positive
EBV-: Epstein-Barr virus negative
RLN: Reactive Lymph node



Interpretation of recovered factors - Rank 20

• At intermediate ranks, factors begin to pick up GEPs that characterize cell type specific sample heterogeneity 
• Some factors continue to pick up cell type identity programs that are conserved across all samples
• Factors corresponding to Tumor cell type split by mostly EBV+ and mostly EBV-

Sample mode

Cell type mode



C-ZIPTF identifies heterogeneity in tumor cell type identity gene expression program

• We identify factors that are capture heterogeneity in tumor cell type identity across different patients
• These subgroupings are mostly in line with clinically annotated EBV status 
• The gene programs captured concur with the genes that are recovered by DE testing  

Factors from Rank 20



C-ZIPTF identifies gene expression programs for cancer associated fibroblasts

Factors from Rank 20



C-ZIPTF identifies gene expression program upregulated in monocytes from tumor samples

Factors from Rank 20



Interpretation of recovered factors - Rank 40

• At much higher ranks, the factors begin to break down to individual donor specific gene expression programs.
• Again, some factors continue to pick up cell type identity programs that are conserved across all samples
• Tumor cell type GEPs subdivide the HL samples at higher resolution

Sample mode

Cell type mode



Malignant B Cells of CHL depend on the microenvironment

1

What are the cell 
types/states within 
the TME of CHL?

What cell 
types/states are 
enriched around 
HRS cells?

TME-specific 
survival & growth 
signaling?

Mechanisms of 
immune evasion?

Drug 
resistance

Metastasis

Immunotherapy
response

E. Derenzini and A. Younes. Predicting treatment outcome in classical Hodgkin Lymphoma: genomic advances. (2011)



Inter- & Intra-patient
Heterogeneity

Cross-talks & Pathways
within the TME

Immunotherapy
Targets



3 Future
Projects &
Goals



Applications in 
additional domains

Theoretical improvements
of Tensor Algorithms

Future long-term adventures

Integrations of Tensor Methods and 
Deep Learning approaches 



Neriman Tokcan <neriman.tokcan@umb.edu>

Thanks!
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