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CP Decomposition
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CP-decomposition- traditional approaches

A common method for CP decomposition and other tensor-related optimization problems is
alternating least squares. We want to solve the following problem:

Fit (explained variance)=

min |7 —7'll= [Zjxefc Where T'=[G,C,S]. 1 N7 =7
’ : 171

It is not a convex problem, but it can be given as 3 convex problems.

min||T W _clcOT where T7® is the mode-1 matricization of the tensor T,

min||7® - ¢S © 6)T O denotes the Khatri-Rao" product - matching column-wise
C Kroneckerproduct COG=[c;® g ¢ R g, ...cp ®
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Other loss functions?

Kullback-Leibner divergence

D (7117 = Y T(Dlog 7(2)
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Choice of the loss function or distance metric?

T (2) Stability of the factorization?



MLE & Bayesian approach

Maximum Likelihood Approach

Bayesian Approach

argming cc d(T,T’)

s.t. constraints on the latent
factor matrices S, C, G

loss functions:

d@, 7)=I7 =7l

Kullback-Leibner divergence

D TIIT) = Y T@log 13
ZEZ

Given the observed tensor T = [A4, B, C].The goal is to
estimate the posterior distribution of the factor matrices
(A, B, C) given the observed tensor T and any prior
information you might have.

Prior distributions are specified for the factor
matrices- via modglh\(perparameter set H

‘ The posterior p((A, B, C/\IT, H)

P

latent factors observed tensor  hyperparameter set

The posterior distribution is analytically intractable and
must be approximated

Techniques like
Markov Chain Monte Carlo (MCMC)
Variational Inference (VI)




Border rank

T=ez®el®el+el®ez®el+el®el®ez

T has rank 3, but it can be approximated by rank 2 tensors
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Numerical instapility

Convergence Problems ‘\

Dependence
min |7 5 ® c; ® gy || where on the Initial Guess

=1
rank 3 approximation for
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Tensor decomposition: its limitations

Decomposition is nhot stable
Convergence is not guaranteed
Rank selection is a challenge

Uses assumptions that do not hold on real data sets

Needs a pipeline for interpretation of latent factors

Without custom pipeline: more capable than traditional methods

With custom pipeline: outperforms existing tensor methods



Numerical instability and convergence problems

Rank selection is challenging

Interpretation of the factors can be difficult

Incorporating true distribution of the data




Consensus based tensor factorization
rank selection
stable factorization

Measure the

“goodness of Gene Consensus
G, G, Gm ing” factorization
clustering consensus
median G C S
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Run #1 Run #2 Run #M
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Connectivity,(i,j) = 1 gene i and gene j probability of gene i and gene j cluster together caelc\)tjlz fe coa henztic
belong to same cluster and 0 otherwise. average of connectivity matrices P

correlation



Consensus based tensor factorization

decomposition runs
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Bayesian Tensor Factorization

* The counts T are modeled as draws from a Poisson (or Zero Inflated
Poisson) distribution. The mean for Ty is given by T, where

T=7T" = |[G,CS]= ngr®cr®sr
Tijx =~ Poisson (A= YR 9riCrj Srk)

« We set a Gamma Prior on each entry of the factor matrices S, C and G,

and a gaussian prior on the gate parameter in the ZIP model that
controls the zero inflation.

Generative model.
S ~ Gamma(ag, B;)
C ~ Gamma(a,, f,)
G~ Gamma(ag,ﬁg)

p~N(i o) excess zeros
Tij =~ ZIP(A= Z 9riCrj Srk ( qb 51gm01d(p\1)
=1 ~ - — /

» Potential benefits of Bayesian inference compared to the more
prevalent maximum likelihood estimation approach include

 uncertainty quantification,
* incorporation of more realistic noise assumptions, and

 aprincipled way to include prior information
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Graphical model for BTF of a third order tensor

Note: To maximize the evidence lower bound (ELBO), we employ a stochastic
optimization algorithm known as the Black Box Variational Inference. This
algorithm operates by stochastically optimizing the variational objective using
Monte Carlo samples from the variational distribution to compute the noisy
gradients. It effectively alleviates the burden of analytic computations and
provides a more efficient approach to ELBO maximization.



Synthetic tensor experiments for Zero-inflated Poisson Factorization

R

¥=14B,Cl=) @b &c,

r=1

AE]RIXR,B = RJXR,C = RKXR.

with elements drawn from a Gamma distribution a = 3, 8 = 0.3, we generate y' by sampling from a ZIP distribution with
mean y and varying probability extra zeros. (1,],K,R) = (10,20,300,9)
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ZIPTF: Zero-inflated Poisson factorization

NNCP-ALS: Non-negative CP decomposition via alternating least squares
GPTF: Gamma-Poisson tensor Factorization

TGTF: Truncated Gaussian tensor factorization
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Application 1: multi-donor multi-cell type expression data

Splatter simulation to generate the synthetic single-cell RNA sequencing dataset. The simulation framework utilizes a
Gamma-Poisson hierarchical model with hyper-parameters estimated from real data.

UMAP 2
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3,000 cells, 1,000 genes ,six donors

five gene expression programs defining cell type identities

three gene expression programs defining donor-specific activity
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Derived Factor 2

Recovery of gene expression programs
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Recovery of gene expression programs

Splatter Simulation

Method
: I NMF
-: ‘ 1 Amortized LDA
| 0-91 | B NNCP_ALS
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NMF: Non-negative matrix factorization
LDA: Latent Dirichlet Allocation



Unsupervised discovery of disease subgroups and multicellular gene expression programs in
the peripheral blood of patients with systemic lupus erythematosus (SLE)

dataset: C-ZIPTF to a multiplexed scRNA-seq (mux-seq) to profile over 1.2 million PBMCs from patients with
systemic lupus erythematosus (SLE) and healthy controls

Downsampled to 85,636 cells: 8 SLE patients with flare, 8 SLE
patients with managed disease, and 8 healthy controls.

cell types: CD4-positive alpha-beta T cells, CD8-positive alpha-beta
T cells, classical monocytes,conventional dendritic cells, and NK cells

pseudobulk tensor rank selection
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Cell type identity Gene Expression Programs

Factor_10

umap 2
5 4 = = B

i)

[iLin)
ool

sample factors

fackar = 10 | mode = sample

factar = 10 | made = celltype

cell type factors

top 20 genes

factor = 10 | made = gene

CO3D, CDAG, COAT, CORT, CO3E,

HOSIR, LEPROTLL, OXMADY, LEFL, ATFTIFZ,
TRABDZA, PASK, SELENOM, MEZIPL, LCK,
TOBL, SVIP, BCL11AE, NELLZ, SHIYLL

factor = 5 | mode = sample factor = 5 | mode = celitype

factor = 5 | mode = gene

04 5100412, 510044, RAPT, 510049, CD14,
By C5TA, SERFINAL, CFD, APOBECIA, TMEM1TER,
® 0. CLECAE, ASGR1, CDA, FCN1, MNDA,
: VCAN, MSd&RA, NCFL, CYRE, CLEC124A
0 0.0
factor = 12 | mode = sample factor = 12 | mada = colltypa factor = 12 | moda = gene
00 CLEC104, FCERLA, ENHO, HLADQEL, HLADOAT,
¥ HLA-OREE, COLC, HLA-DRS, HLA-DPAL, HLA-DPAL,
T:; 0.0l PHACTRL, NDRG2, DNASELLS, COLE, CLICZ,
2 100 (074, C5T3, HLA-DRB, HLA-DMA, CPVL
i 0.00 . A
factar = 19 | mode = sample 00 factor = 19 | made = celltype factor = 18 | mode = gene
' ELRFL, GMLY, CTSW, CLIC3, XCL2,
¢ GZME, PAF1, CMC1, FGFEPZ, SPONZ,
% 0.002 ELADL, HOPK, ELRCL, PTGDS, S1PRS,
# AKRLC3, RAMPL, KLRBL, FCGR3A, IL2RB
e y

[E¥ P [E¥

factor = & | mode = sampla

factor = 8 | mode = celitype

Dl‘ I
0.0

factor = 8 | mode = gene

GZME, CO84, GIMH, COBH, ZNFG33,
NKGT, GIMA, CSTT, LYAR, LAGE,

IL32, DSR2, GZMM, KLRGL, PATLZ,
LAIRZ, FCRLE, S100, Clorf2l, IFNG

61

-5 o 5 1
UMAF 1

Ch4-positive, alpha—taia T call
GOa-positive, alpha-bata T call
classical manooyte
corventional dendrilic cell

®  raiural killar call

(RN

W Heslity
SLE Flare
M ELE Maniagad

Cellypi

B CDé-pasiie, alpha-tsa T cal
COB-posiire, alpho-t=Ha T cal
cipssical monocyis
porvandonal Sendridc ol

W nizbural kiker call



Condition Specific Gene Expression Programs
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The number of differentially expressed genes (DEGs) was
55 when comparing all SLE patients against healthy donors
and 122 when comparing SLE patients with an active flare
against healthy donors



Takeaway:

Scenarios where the source of intra-group
heterogeneity is unknown, C-ZIPTF can
nighlight subgroups based on expression
orofiles and identify the GEPs driving
heterogeneity that may be missed by
supervised differential gene expression analysis.




Chafamo, Daniel, Vignesh Shanmugam, and Neriman Tokcan.,
"C-ziptf: stable tensor factorization for zero-inflated multi-dimensional genomics data.”
BMC bioinformatics 25.1 (2024). 323.

Vignesh Shanmugam Daniel Chafamo

Broad Institute
Upenn Medical School

Broad Institute
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Tumor microenvironment (TME)

Complex cell-cell
interactions

Diverse malignant cell states
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Adapted from Tirosh, I & Suva, M. L. Annu Rev Cancer Biology 3, 1-16 (2018)



Classical Hodgkin Lymphoma (CHL)

B Cells
a.R.a. Hodgkin Reed
Sternberg Cells
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Application to multi-donor Hodgkin Lymphoma single nucleus dataset

Malignant B cells of Hodgkin lymphoma are dependent on the native
tissue microenvironment for survival and evade anti-tumor immunity

CD8_T cells

We are interested in isolating the gene expression programs that
characterize the altered cell states of immune and stromal cells in
Hodgkin lymphoma patients.

To address this question, we utilize a Single nucleus RNA-Seq (slide-tags
protocol) dataset of 15 human samples from a clinically annotated patient
cohort:

MM Plasma_cells

Fr?

10 Hodgkin lymphoma patients (22 replicates)
5 Epstein-Barr virus (EBV) positive
5 Epstein-Barr virus (EBV) negative
5 reactive lymph nodes (22 replicates)

We recover 320,000 nuclei after quality control (nUMI > 400, nGene > 200,
%MT < 5, ambient RNA correction and doublet filtering)

15 cell types were annotated manually

UMAP2

UMAP1

Malignant B

- Cells
Surrounding immune cells (Hodgkin Reed
Sternberg Cells)




Classic Hodgkin Lymphoma

Diverse malignant cell states
15 cell types

esie
40 donors
2 conditions

Diverse non-malignant cell types & states - Classic Hodgkin Lymphoma
» Epstein-Barr Virus Positive

. . « Epstein- Barr Virus Negative
- Reactive lymp nodes
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Method Overview

Benefits of the method:

* De novo discovery of gene expression
programs that vary across cell types and donor
conditions

* Unsupervised stratification of donors into
subgroups and identification of GEPs that

drive those stratifications

Cell types

Pseudobulk tensor

Single cell/nuclei

— 7.}
o
5 &
a 102

Our paper will be available on bioRxiv!

Title: "Genome-scale spatial
mapping of the Hodgkin lymphoma
microenvironment identifies factors
required for tumor cell survival”

Donors Cell types Genes

Factors

\

factor = 10 | mode = sample factor = 10 | mode = celltype

factor = 10 | mode = gene

CD3D, EOMES, BCL11B, CD8A, CRTAM,
CD8B, TIGIT, CD2, ZAP70, PYHIN1,

21 CD3E, CD3G, GZMA, FASLG, GZMH,
™ SIRPG, CA6, PRF1, CD28, LAT
0

D, D, D, GG G




Pseudobulk tensor formation

* Given a cell by gene matrix, wherein cells are annotated by cell type Gene fi ltering
and donor, we create a pseudobulk tensor by aggregating the raw

counts for each cell type, donor, and gene.
* In order to facilitate biological interpretability of factors and reduce

* The resulting pseudobulk data tensor has dimensions Sx C x G, noise in the tensor formed we removed genes using the following to

where S denotes the number of samples(donors), C the number of criteria:
cell types and G the number of genes. 1. Filter out genes that we not provided with HGNC
* We normalize the tensor such that each sample-cell type pair has a (HUGO Gene Nomenclature Committee) symbols
total 0f 10,000 counts. 2. Filter out genes with less than 10 total count across all
» For the Poisson and Zero Inflated Poisson models we round the cells
counts to the nearest integer to align with the support for the models.

- i = N
2 _— o
S N 0 — )
5] | [ | S B

0] | O Donors
- Genes
[ ] Cell types
Single Cells Pseudo-bulks
000 Donors . ) i . . _
JW Squair, et al. Confronting false discoveries in single-cell differential

OO cell types expression. Nat Commun 12(1):5692.



Application to multi-donor Hodgkin Lymphoma single nucleus

dataset

By pseudo-bulking we created a tensor with dimensions 40 x 15 x 19,875 (Donors x Cell types x Genes)

Explained variance of factorization went from a low of 0.627 at rank 2 to a high of 0.952 at rank 40

We run the algorithm 100 times to check the stability

Explained Variance
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0.8 -
0.7 1
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10 20
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At which rank we have stability?

Gene Cophenetic Correlation Silhouette Score
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0.95

0.8 1
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10 20 30 40 10 20 30 40
Rank Number of clusters

J.P. Brunet, P. Tamayo, T.R. Golub, J.P. Mesirov, and E. S. Lander,Metagenes and Molecular Pattern Discovery
Using Matrix Factorization, Proceedings of the National Academy of Sciences (2004)



Assighing genes to factors

To select factor specific genes, we use two metrics:

cutoff [1.25 = median of all loadings]

1. Entropy . —
1 % 10 - : T
Entropy(gi) = 1+ P(gi, fj) log2 P(gs f;) L
j=1 8 I —
where R = rank and P(gi,fj) is the probability that the gene i contributes to factor J. = :l_ L
61
* The higher the entropy the more factor-specific the corresponding gene. & 4-
* We set a threshold of median + 3'Median Absolute Deviation to filter for high entropy genes
2 -
2. Max Loading 0
_ . 102 1072 107! 10° 10! 102 103
* Toexclude genes that are overall too lowly expressed we filter out genes whose maximum Max Loading
loading across all factors is less than the median of all loadings.
cutoff [0.47 = median + 3 x MAD ]
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Kim, Hyunsoo, et al. Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares for microarray data analysis. Bioinformatics 23,
12:1495-1502, 2007.



Interpretation of recovered factors - Rank 12

» At lower ranks, the factors mostly pick up cell type identity gene expression programs.

* The genes associated with the factors are canonical cell type marker genes.

40X 15 X 19,875
Donors x Cell types x Genes

» Factor 5 which loads only on tumor cells from Hodgkin Lymphoma samples, identifies the tumor identity gene expression program.

Sample mode
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Interpretation of recovered factors - Rank 20

» Atintermediate ranks, factors begin to pick up GEPs that characterize cell type specific sample heterogeneity
» Some factors continue to pick up cell type identity programs that are conserved across all samples
» Factors corresponding to Tumor cell type split by mostly EBV+and mostly EBV-
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C-ZIPTF identifies heterogeneity in tumor cell type identity gene expression program

«  Weidentify factors that are capture heterogeneity in tumor cell type identity across different patients
* These subgroupings are mostly in line with clinically annotated EBV status

* The gene programs captured concur with the genes that are recovered by DE testing
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C-ZIPTF identifies gene expression programs for cancer associated fibroblasts

Factors from Rank 20
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C-ZIPTF identifies gene expression program upregulated in monocytes from tumor samples

Factors from Rank 20
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Interpretation of recovered factors - Rank 40

» At much higher ranks, the factors begin to break down to individual donor specific gene expression programs.

» Again, some factors continue to pick up cell type identity programs that are conserved across all samples
« Tumor cell type GEPs subdivide the HL samples at higher resolution
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Malignant B Cells of CHL depend on the microenvironment

What are the cell
types/states within Denditic cell *

the TME of CHL?
T cell

Eosinophil

What cell Drug
types/states are resistance
enriched around
HRS cells? - — @
Macrophage HRS cell
/ ) \ el Metastasis
2 e col Immunotherapy
Endothelial cell response

E. Derenzini and A. Younes. Predicting treatment outcome in classical Hodgkin Lymphoma: genomic advances. (2011)



Inter- & Intra-patient Cross-talks & Pathways Immunotherapy
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Future long-term adventures

Integrations of Tensor Methods and
Deep Learning approaches

SRS Theoretical improvements
EpaNEs of Tensor Algorithms

: Applications in
v additional domains



Neriman Tokcan <neriman.tokcan@umb.edu> UMass

Boston
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