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What is a tensor?

A tensor is a multi-way extension of a matrix:

A multi-dimensional array

A multi-linear map

We all know the following tensors:

Scalars

Vectors

Matrices
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Multi-way extension?

1

1Figure: Anima Anandkumar
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What is a tensor?

2

2https://www.slideshare.net/yokotatsuya/principal-component-analysis-for-
tensor-analysis-and-eeg-classification
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Notation and Preliminaries 1

The order of a tensor is the number of dimensions, also known
as ways, modes. A tensor X is an N-way (N-dimensional)
array.

Fibers are higher-order analogue of matrix rows and columns.
A third order tensor has three modes: columns, rows and
tubes.

Slices are generated by fixing one of the indices. For a third
order tensor, slices are two-dimensional sections.

Unfolding (flattening, matricization) of a tensor is the process
of reordering the elements of a tensor into a matrix. Foir
instance a 3⇥ 4⇥ 5 tensor can arranged as a 3⇥ 20 matrix,
or a 4⇥ 15 matrix, and so on.
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Examples

Order 3 tensor Order 4 tensor
3

3M.A. Qureshi et al., Quantifying Blur in Color images using Higher Order
Singular Values,
https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors
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Fibers, Slices of tensors

4

4T. G. Kolda, B. W. Bader, Tensor Decompositions and its Applications,
2009
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Unfolding of tensors

5

5Qiao et.al, Generalized N-Dimensional Principal Component Analysis
(GND-PCA) Based Statistical Appearance Modeling of Facial Images with
Multiple Modes, 2009.
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Unfolding example

6

6Williams et al., Unsupervised discovery of demixed, low-dimensional neural
dynamics across multiple timescales through tensor components analysis, 2017.
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Tensors for Biomedical data

Rapid growth in quantity and variety of biomedical data
exceeds the capacity of matrix based data representations

One of the highest challenges in biomedical data
processing is the analysis of multi-modal data

Tensors provide often natural and compact representation
of such massive data

Increasing number of multi-platform genome data of a
single person, such as a cancer patient, are being
generated.These data describe di↵erent biological aspects of a
person and need to be integratively analyzed.
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Why tensors and tensors decompositions?

To analyze big data (As starting point express the tensor as
sum of meaningful parts)

For dimension reduction

To exploit the structure of the data

To reduce the computational complexity

To deal with missing data (tensor completion)

To deal with noisy data
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Preliminaries - volume 2

Let u and v be vectors of dimensions n and m respectively, then
their outer product is a rank 1 matrix of size n ⇥m:

u⌦v = uv
T

The outer product of vectors u(i) of size Ii , 1  i  N is a rank 1
(simple) tensor of size I1 ⇥ I2 . . .⇥ IN :

(u(1) ⌦ u
(2) . . .⌦ u

(N))i1i2...iN = u
(1)
i1

u
(2)
i2

. . . u(N)
iN

The Frobenius norm of an I1 ⇥ I2 ⇥ I3 tensor X can be given as:

kXkF =

vuut
I1X

i=1

I2X

j=1

I3X

k=1

X 2
ijk
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Matrix factorization

Ratings ⇡

2

4u1 u2 . . . ur

3

5

2

64
�1

. . .

�r

3

75

2

4m1 m2 . . . mr

3

5
T

Ratings ⇡
rX

i=1

�iui⌦mi
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CP decomposition

Let X be a tensor of size I1 ⇥ I2 ⇥ I3. The rank of X is the smallest
r such that

X =
rX

i=1

�iai ⌦ bi ⌦ ci . (1)

The decomposition given in (1) is known as CANDECOMP
/PARAFAC (CP) decomposition.
The factor matrices refer to the combination of the vectors from
the rank-one components, i.e., A = [a1a2 . . . ar ], B = [b1b2 . . . br ]
and C = [c1c2 . . . cr ].
The decomposition given in (1) can be concisely written as
X ⇡ [[⇤;A,B ,C ]].
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Summarizing data-phenotype generation

7

7Henderson et al., Limestone: High-throughput candidate phenotype
generation via tensor factorization, 2014
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Tucker decomposition

The Tucker decomposition is a form of higher-order PCA. It
decomposes a tensor into a set of matrices and a small core tensor.

Y ⇡ G ⇥1 A⇥2 B ⇥3 C

Y ⇡
R1X

i=1

R2X

j=1

R3X

k=1

Gijkai ⌦ bi ⌦ ci .
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Alternating Least Squares for tensor decompositions

A common method for CP decomposition and other tensor-related
optimization problems is Alternating Least Squares. We want to
solve the following problem:

minX̃
��X � X̃

�� where X ⇡ X̃ = [[A,B ,C ]].

It is not a convex problem, but it can be given as 3 convex
problems:

minA

���X (1) � A(B � C )T
��� ,

minB

���X (2) � B(C � A)T
��� ,

minC

���X (3) � C (B � A)T
��� .
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CP decomposition- Limitations

CP decompositions are not always
numerically stable

Convergence is very slow

Algorithm may not converge to a global
minimum

It is heavily dependent on the starting
guess
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The Cancer Genome Atlas (TCGA)

TCGA is a comprehensive and coordinated e↵ort to accelerate our
understanding of the molecular basis of cancer through the
application of genome analysis technologies.
Outcomes and Impacts:

Deepened our understanding of cancer through molecular
characterizations
Established a rich genomics data resource for the broad
research community
Helped advance health and science technologies
Changed the way cancer patients are treated in the clinic

8
8NIH, The Cancer Genome Atlas ProgramNeriman Tokcan

Tensors for Multi-Dimensional Data Analysis (with a brief survey on the applications)



Pan-Cancer Project
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PANCAN12 Tensor – Tucker decomposition
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Problems

Data are embedded in a high-dimensional space with a
low-dimensional flow pattern

Genomics data are usually contaminated by noise

Missing data or sparse tensors. Some e↵ective methods:
Partially Observable Tucker, Silenced Tucker, GIFT.

Oh S. et al., GIFT: Guided and Interpretable Factorization for Tensors - An
Application to Large-Scale Multi-platform Cancer Analysis, 2018
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Di↵erentially Expressed Genes

Gene expression data – low rank tensors: Gene expression
data are close to some low-dimensional subspaces. It is
natural to approximate nondi↵erentially expressed gene data
with a low rank tensor.

Di↵erentially expressed genes – sparse tensors: Although the
human body contains tens of thousands of genes, only a few
are in fact related to biological processes. Therefore, the
di↵erentially expressed genes are treated as sparsely disturbed
signals (sparse tensor) in the original data.
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Low rank decomposition for di↵erentially expressed genes

Y. Hu et al., Di↵erentially Expressed Genes Extracted by the Tensor
Robust Principal Component Analysis (TRCPA) Method, 2019.
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First Matrix Case– Robust PCA

https://kojinoshiba.com/robust-pca/
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PCA – low rank matrix recovery

There are several ways to mathematically formulate PCA.
For a given data matrix X of size m ⇥ n, (Trimmed) PCA can be
formulated as follows:

minY ,E ||E ||F ,
subject to rank(Y )  r and X = Y + E .

r  min(m, n),

||.||F is the Frobenius norm.

Note: PCA is severely a↵ected by large-amplitude noise; not
robust.
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Robust PCA - RPCA

[Wright 2009]

minY ,E rank(Y ) + �||E ||0,
s.t. X = Y + E .

||.||0 is `0 norm, number of non-zero elements in E .

� is a Lagrange multiplier.

It is a matrix recovery problem

rank(Y ) and ||.||0 are not continuous, not convex; very hard
to solve.
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Robust PCA– Convex version

[Candés2011] reformulated the problem:

minY ,E ||Y ||⇤ + �||E ||1,
s.t. X = Y + E .

||Y ||⇤ is the nuclear norm, sum of singular values of Y; convex
surrogate for rank(Y ).

||E ||1 is `1 norm, sum of absolute values of entries of E ;
surrogate for ||.||0.
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Tensor Robust Principal Component Analysis for order 3

For a given tensor data X , we want to decompose it X = Y + E
into a low rank tensor and a sparse tensor. The objective function
can be given as:

minY,E ||Y||⇤ + �||E||1,
s.t. X = Y + E .

||Y||⇤ = min{
rX

ı=1

|�i | : Y =
rX

i=1

�iai ⌦ bi ⌦ ci , r 2 R} (2)
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Identification of Di↵erentially Expressed Genes

Assume that X is a tensor of size n ⇥m ⇥ 3, then E has 3 frontal
slices: E1 = E(:, :, 1), E2 = E(:, :, 2), E3 = E(:, :, 3).
Steps for each slice:

fj =
nX

i=1

|E1(i , j)|, 1  j  m,

Ê1 = (f1, f2, . . . , fm), arrange vectors in descending order,

Ē1 = (f̄1, f̄2, . . . , f̄m).

Filter out the top 500 maximum values and extract the
corresponding genes. They utilized GO:TermFinder, an important
for analysis of genomic data in which Gene Ontology information
and rich Gene Ontology terms can be accessed.

Y. Hu et al., Di↵erentially Expressed Genes Extracted by the Tensor
Robust Principal Component Analysis (TRCPA) Method, 2019.
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Data and Tests

The TCGA project included the 33 most common cancers and
more than 11,000 tumor samples for sequencing.
COAD HNSC ESCA GE: 20502 genes * 192 samples * 3 cancer
types
(colon adenocarcinoma (COAD), head and neck squamous cell
carcinoma (HNSC), esophageal carcinoma (ESCA))

After getting feature vectors, GO:TermFinder is used,

Performance computation of di↵erent methods were evaluated
using P-values and hit counts.

The experimental method corresponding to the smaller
P-value indicates that the e↵ect of di↵erentially expressed
genes is better

Maximum value of p value is set to 0.01.
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Results

The P-value indicates the enrichment degree of the gene.

P-value of GO:0006614 was 6.49E-74, which is much smaller
than the P-values of other methods.

There were 94 genes in the GO:0006614 terminology, and
RPCA, LLRR, PCA, and BRTF could detect 51, 51, 60, and
55 genes, respectively. However, 61 genes were identified
using the TRPCA method.

Y. Hu et al., Di↵erentially Expressed Genes Extracted by the Tensor
Robust Principal Component Analysis (TRCPA) Method, 2019.
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Question: What factorization principle would support a
decomposition of training images of a class of objects into a basis
of local parts?

Matrix based representation: Images
are vectorized

Tensor based representation: 2D
representation of images are preserved

Non-negative Matrix Factorization: Let V be a vector whose
columns are the vectorized training images.

V ⇡ WH,W � 0,H � 0.

The columns of W form the new basis vectors and due to
non-negativity constraint both the basis vectors and mixing
coe�cients tends to come out sparse.
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Non-negative Tensor Factorization

Let At , t = 1, . . . , k be images of dimension n ⇥m. We stack
them to get a 3rd order tensor X of size n ⇥m ⇥ k . We want to
factorize X and consider the following least-squares problem:

minui ,vi ,wi ||X ⇡
rX

i=1

ui ⌦ vi ⌦ wi ||F

subject to : ui , vi ,wi � 0.

We get three factor matrices:
U = [u1, u2, . . . , ur ], V = [v1, v2, . . . , vr ], W = [w1,w2, . . . ,wr ].
How to capture relationship between the 2D images and the above
factorization?

vec(At) is a linear combination of rank1-matrices
ui ⌦ vi = vec(uivTi ) with coe�cients are taken from the t-th
row of wt .

At = U�tV
T where �t = diag(w1t ,w2t , . . .wr t).
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Sparse Image Coding—NTF versus NMF

1 Vectorizing an image will lead to information loss as the local
image structure (spatial redundancy) would be lost

2 It is not clear whether the NMF process will yield the
underlying generative parts, even when there is a perfect fit.
Problem: Invariant parts which in fact create ”ghost” in the
factors and contaminate the sparsity of basis vectors.

3 E�ciency- Factors of NTF are sparse and separable, they are
significantly more compressed than NMF factors.
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Experiment 1–Swimmer image set

Data: Swimmer image set of 256 images of dimensions 32⇥ 32.
Each image contains a ”torso” in the center and four ”limbs” that
can be in 4 di↵erent positions.

Figure: Factors generated by NMF (middle row), NTF (bottom row).
The NMF factors contains ”ghost” of invariant parts(the torso) which
contaminate the sparse decomposition.

NMF and NTF both find 17 factors correctly resolves the local
parts. NMF fails on the torso. NTF contains a unique
factorization.

Hazan et al., Sparse Image Coding Using a 3D Non-Negative factorization
Neriman Tokcan
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NTF resolving local parts a single image

Hazan et al., Sparse Image Coding Using a 3D Non-Negative factorization
Neriman Tokcan
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Experiment 2 –MIT CBCL face dataset

Data: MIT CBCL database, set of 2429, 19⇥ 19 face images.
Experiment:Using the filter responses of NMF, NTF, PCA as
measurement for an SVM classifier, with linear, polynomial of
degree five and RBF kernels, trained over the face dataset. 50
NTF factors are computed to reconstruct the original images. NTF
framework has higher compression rate and each NMF is
comparable to 19 NTF factors.

Figure: The NTF outperformed the NMF even 50 NMF factors were used
(20-fold higher space than NTF)

Hazan et al., Sparse Image Coding Using a 3D Non-Negative factorizationNeriman Tokcan
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Three-Way Clustering of Multi-Tissue Multi-Individual
Gene Expression Data

A typical multi-tissue experiment collects
gene expression profiles from di↵erent in-
dividuals in a number of di↵erent tissues,
and variation in expression levels often
results from complex interactions among
genes, individuals, tissues.

Methods: Clustering has proven useful to reveal latent structure in
high-dimensional expression data. Traditional methods: K-means,
PCA, t-SNE,etc.

Wang et al., Three-Way Clustering of Multi-Issue Multi-Individual Gene
Expression Data Using Semi-nonnegative tensor decomposition, 2019
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Problems with the traditional methods

These methods assume that gene expression patterns persist
across one of the di↵erent contexts, or that samples are i.i.d
or homogenous.

Arranging the given data as matrices brings some problems:
1 precluding potential insights into tissue ⇥ individual specificity,
2 inferring gene modules separately for each tissue ignores

commonalities among tissues and may hinder the discovery of
di↵erentially-expressed (DE) genes,

3 ignoring individual heterogeneity (biological attributes such as
race, gender, and age) impedes the accurate estimation of
gene-and/or tissue-wise correlations.

Tensor based approaches have been proposed to handle
heterogeneity in each mode and learns the clustering patterns
across di↵erent modes of the data in an unsupervised manner
analogous to PCA and SVD.
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Dataset & Semi-nonnegative tensor decomposition

Genotype-Tissue Expression (GTEx) RNA-seq data, which consist
of RNA-seq samples collected from 544 individuals across 53
human tissues. The GTEx data set contains categorical clinical
variables such as sex, race, and age.
The expression tensor Y 2 RnG⇥nI⇥nT is modeled as a perturbed
rank-r tensor,

Y =
rX

i=1

�rGr ⌦ Ir ⌦ Tr + E ,

where �r 2 R+; Gr , Ir , and Tr are norm-1 vectors; and
E = [[Ei ,j ,k ]] is a noise tensor with each entry Ei ,j ,k i.i.d. N(0,�2

e ).

Gr ! eigen-genes

Ir ! eigen-individuals

Tr !eigen-tissues

Gr ⌦ Tr ⌦ Ir ! basic unit of an expression pattern

where (Gr ⌦ Tr ⌦ Ir )i ,j ,k = Gr ,iTr ,j Ir ,k .
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Clustering data using Semi-nonnegative Tensor
Decomposition

9.

9Wang et al., Three-Way Clustering of Multi-Issue Multi-Individual Gene
Expression Data Using Semi-nonnegative tensor decomposition, 2019
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Experiment-1

Expression tensor consisting of 60 genes, 20 individuals and 10
tissues. The 20 individuals were partitioned into two groups (young
vs. elderly), each of size 10. The genes and tissues were each
partitioned into three groups (denoted by A, B, C).

10.

10Wang et al., Three-Way Clustering of Multi-Issue Multi-Individual Gene
Expression Data Using Semi-nonnegative tensor decomposition, 2019
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PCA and fixed-e↵ect data analysis

PCA: They averaged the expression over individuals and apply
matrix PCA.

Neither the mode-specific grouping nor the three-way
interaction can be recovered.

Fixed-e↵ect meta analysis They tested the age e↵ects in each
tissue separately and combined the test statistics into a
pooled estimate using z-score method

It su↵ers from low power for detecting DE genes. The
meta-analysis poor performance is due to the tissue- specificity
of DE genes: genes in Gene Group A have opposite age e↵ects
in two of the tissue groups, so the signals partially cancel out;
moreover, genes in Gene Groups B and C have age e↵ects in
only subsets of tissues, potentially diluting observed DE
patterns.
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Results

11.
11Wang et al., Three-Way Clustering of Multi-Issue Multi-Individual Gene

Expression Data Using Semi-nonnegative tensor decomposition, 2019
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