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What is a tensor?

Tensor is a multi-dimensional array
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Examples

Figure: 3rd order tensor
Figure: 4th order tensor
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Multilinear algebra

Let V1,V2, ...,Vd be vector spaces. A function

f : V1 ⇥ V2 ⇥ ...Vd ! C

is called multilinear if it is linear in each factor V`. The space of
such multilinear functions is denoted V

⇤
1 ⌦ V

⇤
2 ⌦ . . .⌦ V

⇤
d
and

called the tensor product of the vector spaces V ⇤
1 ,V

⇤
2 . . . ,V ⇤

d
.

Elements T 2 V
⇤
1 ⌦ V

⇤
2 ⌦ . . .⌦ V

⇤
d
are called tensors.

Let V ⇠= Rn be a Euclidean vector space with basis e1, e2, . . . , en.
On V we have an inner product that allows us to identify V with
its dual space V

?. We consider the d-fold tensor product of V :

V
⌦d = V ⌦ V ⌦ · · ·⌦ V| {z }

d

⇠= Rn⇥n⇥···⇥n ⇠= Rn
d

(1)
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Tensors - equivalent definitions

There are various ways to think of elements of V⌦d .The following
statement is well known.

Lemma

There are bijections between the following sets:

1 the set of tensors V
⌦d

;

2 (V⌦d)?, the set of linear maps V
⌦d ! R;

3 the set of R-multilinear maps V
d ! R

The bijection between (2) and (3) follows from the universal
property of the tensor product. Since we have identified V with its
dual V ? we can also identify V

⌦d with (V ?)⌦d ⇠= (V⌦d)?. We will
frequently switch between these di↵erent viewpoints.
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Why tensors and tensors decompositions?

To analyze big data (As starting point express the tensor as
sum of meaningful parts)

For dimension reduction

To exploit the structure of the data

To reduce the computational complexity

To deal with missing data (tensor completion)

To deal with noisy data
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Tucker decomposition

Tucker decomposition decomposes a tensor into a set of matrices
and a small core tensor. Initially described as a three-mode
extension of factor analysis and principal component analysis.

X ⇡ G ⇥1 A⇥2 B ⇥3 C
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CP - PARAFAC

CP decomposition can be considered as a more restricted Tucker
decomposition. In CP, the core tensor is restricted to be diagonal.

X ⇡ X̄ =
rX

i=1

�iai ⌦ bi ⌦ ci = [G,A,B ,C ]

Tensor rank: smallest number of rank-1 tensors that can generate
X by summing up.
We want to find a rank r approximation of the tensor X .
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CP decomposition

Our goal is solving following problem:

minimizeX̄ ||X � X̄ ||F =
X

i ,j ,k

(X (i , j , k)� X̄ (i , j , k))2

This is a non-convex problem with three sub-convex problems.
A common method for CP decomposition and other tensor-related
optimization problems is Alternating Least Squares:

Fix all but a subset of the unknowns

By choosing di↵erent subsets, cycle through all the unknowns

Repeat until converged

Neriman Tokcan Tensors for multi-dimensional data analysis



CP decomposition- Limitations

CP decompositions are not always
numerically stable

Convergence is very slow

Algorithm may not converge to a global
minimum

It is heavily dependent on the starting
guess
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Numerical Instability in CP decomposition

0
1

0
0

1
0

1
0

T = e2⌦e1⌦e1+e1⌦e2⌦e1+e1⌦e1⌦e2.

T has rank 3, but it can be approximated by rank 2 tensors.
Tn = n(e1 +

1
n
e2)⌦ (e1 +

1
n
e2)⌦ (e1 +

1
n
e2)� ne1 ⌦ e1 ⌦ e1, then

limn!1Tn = T .
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Di↵erent decomposition and fit at each run

X ⇡ X̄ =
RX

r=1

ar ⌦ br ⌦ cr , fit = 1� ||X � X̄ ||
||X̄ ||

Example

1 X=t en s o r ( rand ( 2 , 3 , 4 ) )
2 % Gene ra t e s a random t e n s o r o f s i z e 2 3 4

3 Y=c p a l s (X, 3 )
4 % Approx imates a rank 3 decompos i t i on o f X

5

6 CP ALS :
7 I t e r 1 : f = 6.771001 e�01 f�d e l t a = 6 .8 e�01
8 I t e r 10 : f = 9.312852 e�01 f�d e l t a = 1 .5 e�02
9 I t e r 20 : f = 9.778946 e�01 f�d e l t a = 6 .4 e�04

10 I t e r 24 : f = 9.787954 e�01 f�d e l t a = 9 .4 e�05
11 F i n a l f = 9.787954 e�01
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CP-local minimums

X is a 3rd order tensor of size 3⇥ 4⇥ 5. We run the algorithm 40
times.
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Nuclear decomposition

Definition

For a given tensor 3rd order tensor A, we want to find a
decomposition

A =
rX

i=1

ui ⌦ vi ⌦ wi (2)

such that

rX

i=1

||ui ⌦ vi ⌦ wi || (3)

is minimal.

The smallest value in (3) is called the nuclear norm and it is
denoted by ||A||⇤. The decomposition in (2) is called nuclear
decomposition.
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Spectral norm

The dual of the nuclear norm is the spectral norm ||.||�. The

spectral norm kTk� of a tensor T 2 V = R ⌦ G ⌦ B is defined by

kTk� := max{|T · (x ⌦ y ⌦ z)| | kxk = kyk = kzk = 1}.

We have
kTk� := lim

d!1
kTk�,d

where

kTk�,d :=

✓Z

Sp�1⇥Sq�1⇥Sr�1
|T · (x ⌦ y ⌦ z)|d dµ

◆1/d

.

Suppose that d = 2e is even.
Z

Sp�1⇥Sq�1⇥Sr�1
|T · (x ⌦ y ⌦ z)|d dµ =

= T
⌦d ·

Z

Sp�1⇥Sq�1⇥Sr�1
(x ⌦ y ⌦ z)⌦d

dµ.
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Approximation of the spectral norm

Up to permuting the tensor factors, we have the following equality

Z

Sp�1⇥Sq�1⇥Sr�1
(x ⌦ y ⌦ z)⌦d

dµ =

✓Z

Sp�1
x
⌦d

dµ

◆
⌦
✓Z

Sq�1
y
⌦d

dµ

◆
⌦
✓Z

Sr�1
z
⌦d

dµ

◆
.

How to calculate E =
�R

Sp�1 x
⌦d

dµ
�
?

This integral is over the (p-1) unit sphere with the normalized
Haar measure. Because the Haar measure is O(V )-invariant ( ??),
the resultant tensor is also O(V )-invariant.
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Invariant tensors

The orthogonal group is defined as

O(V ) = On(R) = {A 2 Rn⇥n | AA† = In}

The group O(V ) acts on the n-fold tensor product space
as follows. If T =

P
r

j=1 vj ,1 ⌦ vj ,2 ⌦ · · ·⌦ vj ,d 2 V
⌦d is a tensor,

then A 2 O(V ) acts by

A · T =
P

r

j=1 Avj ,1 ⌦ Avj ,2 ⌦ · · ·⌦ Avj ,d . (4)

The subspace of O(V )-invariant tensors is

(V⌦d)O(V ) = {T 2 V
⌦d | A · T = T for all A 2 O(V )} (5)
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Fundamental Theorem of Invariant Theory

Theorem

The space (V⌦d)O(V ) = 0 if d is odd. If d = 2e, the space

(V⌦d)O(V )
of O(V )-invariant tensors is spanned by all multilinear

maps of the form

(v1, v2, . . . , vd) 7!
eY

k=1

hvik , vjk i (6)

where {i1, i2, . . . , ie , j1, j2, . . . , je} = {1, 2, . . . , d}.

The invariant tensor in (6) will be represented by its Brauer
diagram.

Neriman Tokcan Tensors for multi-dimensional data analysis



A labeled Brauer diagram of size d = 2e is a perfect matching
graph with vertices labeled 1, 2, . . . , 2e edges between ik and jk for
k = 1, 2, . . . , e. There is a unique linear map LD : V⌦d ! R such
that

LD(v1 ⌦ v2 ⌦ · · ·⌦ vd) = MD(v1, v2, . . . , vd) =

= (vi1 · vj1)(vi2 · vj2) · · · (vie · vje ). (7)

There is a unique tensor TD 2 V
⌦d such that LD(A) = TD · A for

all tensors A 2 O(V ).
We also will represent this invariant tensor by @ i1,j1@ i2,j2 · · · @ ie ,je .
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Brauer diagrams

Example

if e = 2 (and d = 4), then the Brauer diagrams are

We will give the corresponding maps and tensor of the third
diagram D3.

LD3(v1 ⌦ v2 ⌦ v3 ⌦ v4) = MD3(v1, v2, v3, v4) = (v1 · v4)(v2 · v3)

If e1, . . . , en is a basis of V , then we have

TD3 =
nX

i=1

nX

j=1

ei ⌦ ej ⌦ ej ⌦ ei
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Brauer diagrams-cycles

We can view @1,2 as an element in V ⌦V , but also as a linear map
V ⌦ V ! R. If we apply @1,2 2 (V ⌦ V )? to @1,2 2 V ⌦ V , then
we get

P
n

i=1hei , ei i = n. In diagrams, we can write this as:
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Partial Brauer Diagrams

A partial Brauer diagram of size d is a graph with d vertices
labeled 1, 2, . . . , d whose edges form a partial matching.
To a partial Brauer diagram D with e edges, we can associate an
O(V )-invariant multi-linear map MD : V d ! V

⌦(d�2e) and a
linear map LD : V⌦d ! V

⌦d�2e .

Example

For the diagram:

D =

1 3 5

2 4 6

we have

MD(v1, v2, . . . , v6) = (v1 · v3)(v4 · v5)v2 ⌦ v6 2 V
⌦2

for v1, v2, . . . , v6 2 V .
Neriman Tokcan Tensors for multi-dimensional data analysis



Inner product of invariant tensors

Example

We compute the inner product TD1 and TD2 where D1 and D2 are
the diagrams below:

D1 =
1 3 5

2 4 6

D2 =
1 3 5

2 4 6

(8)

TD1 · TD2 =

0

@
X

i ,j ,k

ei ⌦ ej ⌦ ei ⌦ ek ⌦ ek ⌦ ej

1

A ·

 
X

p,q,r

ep ⌦ ep ⌦ eq ⌦ er ⌦ er ⌦ eq

!
=

X

i ,j ,k,p,q,r

(ei · ep)(ej · ep)(ei · eq)(ek · er )(ek · er )(ej · eq) = n
2. (9)

Neriman Tokcan Tensors for multi-dimensional data analysis



Inner product of invariant tensors

We can visualize this computation as follows

• • •

• • •
·

• • •

• • •
=

• • •

• • •
= n

2, (10)

We overlay the diagrams. The indices of the edges in a cycle must
all be the same. Since there are two cycles, namely i , p, j , q and
k , r we essentially sum over two indices and get n2.
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General rule for inner product

The dot product of two tensors TD1 , TD2 2 V
⌦d can be computed

as follows. We overlay the two diagrams D1 and D2 so that the
(labeled) nodes coincide. Then TD1 · TD2 = n

k where k is the
number of cycles (including 2-cyles).

Proposition

Suppose that Td = TD where D is Brauer diagram on d = 2e
vertices, and Sd =

P
E TE, where the sum is over all Brauer

diagrams E on d vertices. Then we have

Td · Sd = n(n + 2) · · · (n + d � 2).
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Example

Example

For e = 2, we get

• •

• •
·
✓• •

• •
+

• •

• •
+

• •

• •

◆
=

=
• •

• •
+

• •

• •
+

• •

• •
= n

2 + n + n = n(n + 2). (11)
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Back to integrals

Proposition
Z

Sn�1
v
⌦2e

dµ = 1
n(n+2)···(n+2e�2)Sd

Let U =
R
Sn�1 v

⌦2e
dµ. Since U is O(V ) and ⌃2d -invariant, it is a

linear combination (coe�cients are same) of Brauer diagrams. So
we have U = CS2e where C is some constant. Let D be some
Brauer diagram on d vertices. The value of C is obtained from

1 =

Z

Sn�1
dµ =

Z

Sn�1
(TD · v⌦2e)dµ = TD ·

Z

Sn�1
v
⌦2e

dµ =

C (TD · Sd) = Cn(n + 2) · · · (n + 2e � 2).
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We now consider 3 euclidean R-vector spaces R , G and B of
dimension p, q and r respectively. The tensor product space
V = R ⌦G ⌦B is a representation of H := O(R)⇥O(G )⇥O(B).
We are interested in H-invariant tensors in V . We have

(V⌦d)H ⇠= (R⌦d)O(R) ⌦ (G⌦d)O(G) ⌦ (B⌦d)O(B). (12)

We see that (V⌦d)H is spanned by diagrams with vertices
1, 2, 3, . . . , d and red, green and blue edges such that for each of
the colors we have a perfect matching. This means that each
vertex has exactly one red, one green and one blue edge.

Definition

A colored Brauer diagram of size d = 2e is a graph with d

vertices labeled 1, 2, . . . , d and e red, e green and e blue edges
such that for each color, the edges of that color form a perfect
matching.
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Colored Brauer diagram-Example

1 2

3 4

(13)

corresponds to the linear map LD : V⌦4 = (R ⌦ G ⌦ B)⌦4 ! R
defined by

(a1⌦b1⌦ c1)⌦ (a2⌦b2⌦ c2)⌦ (a3⌦b3⌦ c3)⌦ (a4⌦b4⌦ c4) 7!
(a1 · a2)(a3 · a4)(b1 · b4)(b2 · b3)(c1 · c3)(c2 · c4). (14)
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Approximation of spectral norm d=2

Suppose that d = 2. Then we have
Z

Sp�1
x ⌦ x dµ = 1

p
SR,2,

Z

Sq�1
y ⌦ y dµ = 1

q
SG ,2,

and

Z

Sr�1
z ⌦ z dµ = 1

r
SB,2.

Therefore, we get
Z

Sp�1⇥Sq�1⇥Sr�1
(x ⌦ y ⌦ z)⌦2

dµ = 1
pqr

SR,2 ⌦ SG ,2 ⌦ SB,2.

In diagrams, we get
Z

Sp�1⇥Sq�1⇥Sr�1
(x ⌦ y ⌦ z)⌦2

dµ = 1
pqr

•

•
So we have

kTk2�,2 = (T ⌦ T ) ·
✓

1
pqr

•

•

◆
= 1

pqr
T · T = 1

pqr
kTk2.
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Approximation of spectral norm d=4

Z

Sp�1⇥Sq�1⇥Sr�1
(x⌦y⌦z)⌦4

dµ = 1
p(p+2)q(q+2)r(r+2)SR,4⌦SG ,4⌦SB,4.

SR,4 ⌦ SG ,4 =

=

✓• •

• •
+

• •

• •
+

• •

• •

◆
⌦
✓• •

• •
+

• •

• •
+

• •

• •

◆
=

= 3
• •

• •
+ 6

• •

• •
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Approximation of spectral norm d=4

SR,4 ⌦ SG ,4 ⌦ SB,4 =

✓
3
• •

• •
+ 6

• •

• •

◆
⌦
✓• •

• •
+

• •

• •
+

• •

• •

◆
=

= 3
• •

• •
+ 6

• •

• •
+ 6

• •

• •
+ 6

• •

• •
+ 6

• •

• •
(15)
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Approximation of spectral norm for d=4

kTk4�,4 =

3
• •

• •
+ 6

• •

• •
+ 6

• •

• •
+ 6

• •

• •
+ 6

• •

• •
27

.

This is a spectral-like norm and dual of this norm is a nuclear-like
norm
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Amplification- rank 1 approximation

Suppose that the singular values of A are �1 � �2 � . . . � �r �,
then the spectral norm of A is �1. The singular values of
�(A) = AA

0
A are �3

1, . . . ,�
3
r . So � amplifies the largest singular

value relative to the other singular values. We define
�̄(A) = �(A)/||�(A)||. One can find the main component in the
singular value decomposition by iterating �. For tensors, we define

�(T ) =

Z

||v ||=||w ||=||z||=1
T (v ,w , z)3v ⌦ w ⌦ z . (16)

This operation amplifies the low rank structure of the tensor T . As
n!1, �(T )n typically converges to a rank 1 tensor rapidly. It is
realted to spectral norm approximation, beacuse of the relation
||T ||�,4 = h�(T ),T i.
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Tensor decomposition by amplification

function Decompose(T , r , n)
E = T

s = 0
while s < r do

s  s + 1
U  �̄(E )
Approximate U with vs = as ⌦ bs ⌦ cs

Choose �1, . . . ,�s with kEk minimal, where
E = T � (�1v1 + · · ·+ �svs)

end while
return decomposition T = �1v1 + · · ·+ �svs + E

end function
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Test- rank 1 approximation

T is a 10⇥ 10⇥ 10 tensor of rank 10, where components are
random unit vectors independently drawn from the uniform
distribution on the unit sphere.

cp fits: min=0.0073, mean=0.0806, max=0.0964
cp iteration numbers: min=5, mean=28, max=58
amplification: fit=0.0964, iteration number=10
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Test 2-more regular cp als

cp fits: min=0.0821, mean=0.0974, max=0.0989
cp iteration numbers: min=4, mean=9, max=26
amplification: fit=0.0989, iteration number=2
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Test on tensor decomposition/ denoising

We started with a random 50* 50 *50 tensor of rank 400,
T =

P400
i=1 ai ⌦ bi ⌦ ci where components are random unit vectors,

independently drawn from the uniform distribution on the unit
sphere. We then added a random tensor E with ||E || = 20. We
created a noisy tensor Tn = T + E , and used three methods for
denoising. Each method gives a denoised tensor Td and we
measured the mean squared error ||T � Td ||2.

Mean squared error Signal/Noise ratio (dB)
No Denoising 400 0

CP-ALS 388 0.13
HOSVD 340 0.70

Amplification 193 3.17
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